首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   58篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   16篇
  2015年   21篇
  2014年   32篇
  2013年   44篇
  2012年   60篇
  2011年   39篇
  2010年   19篇
  2009年   32篇
  2008年   31篇
  2007年   30篇
  2006年   42篇
  2005年   34篇
  2004年   29篇
  2003年   17篇
  2002年   28篇
  2001年   4篇
  2000年   2篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1969年   2篇
  1968年   2篇
  1958年   1篇
  1956年   1篇
  1948年   2篇
排序方式: 共有621条查询结果,搜索用时 15 毫秒
141.
During the summer and fall of 1984 and 1985, the eutrophic Lake Akersvatn in south-eastern Norway, used as reserve drinking water reservoir, was found to produce heavy water-blooms of the colonial blue-green alga Microcystis aeruginosa. Samples of the water-bloom were found to be toxic using the mouse bioassay. No toxin was found free in the water as detected by HPLC and mouse bioassay. The toxic cells (minimum lethal dose 8–15 mg/kg body weight in mice) and purified toxin (minimum lethal dose 50 μg/kg body weight in mice) showed signs of poisoning in laboratory rats and mice identical to that of other hepatotoxin-producing M. aeruginosa blooms and strains reported from other parts of the world. The toxin has chemical properties similar to the cyclic heptapeptide reported for a South African M. aeruginosa toxin. The toxin from Lake Akersvatn bloom material has a molecular weight of 994. The toxic bloom of M. aeruginosa persisted from August to November in 1984 and reappeared in July of 1985. While water from Lake Akersvatn was not used for municipal water supply during this period, the presence of toxic blue-green algae in a drinking water reservoir indicates the need to develop monitoring and detection methods for toxic cells and toxin(s).  相似文献   
142.
143.
144.
The nueclotide sequence data reported in this paper have been submitted to the EMBL nucleotide databse and have been assigned the accession number X86972  相似文献   
145.
146.
Purpose

Improving the environmental performances of viticulture practices is particularly complicated during unfavorable climatic conditions because of the need for fungal and other pest pressure and the variability of phytosanitary control methods available for winegrowers. However, winegrowers wish to improve the environmental performances of their practices regardless of climatic conditions. The objective of the study was to quantify the variability in environmental impacts due to climatic variations, and changes in viticulture practices induced by climatic variability.

Methods

Life cycle assessment was used to evaluate the environmental impacts of viticulture technical management routes (TMR) implemented on five plots in the Loire Valley for the Chenin Blanc grape variety. These TMRs are representative of the range of practices used in the region, including intensive conventional practices to moderate organic practices. The study covered two different years of production (2011 and 2013) under contrasting climatic conditions. The first year (2011) was hot and dry, which are favorable conditions for viticulture, while the second year (2013) was cold and humid, which are unfavorable conditions.

Results and discussion

During the unfavorable year, the number of phytosanitary treatments and soil maintenance interventions increased for most of the studied TMRs. This meant that the inter-annual variability in environmental impact was significant, depending on the type of TMR, with differences in impacts ranging from 19% to more than 40% between 2011 and 2013. Managing environmental impacts was found to be more difficult for the organic systems when climatic conditions are unfavorable (in 2013). The non-organic TMRs showed less variation in environmental impacts than the organic TMRs between the 2 years studied.

Conclusions

This study shows the importance of taking into account inter-annual variability in environmental assessments of viticulture systems. Indeed, winegrowers do not respond the same way to climate variability mainly with regard to plant protection and soil maintenance. Viticulture is very sensitive to inter-annual climate variations due to the parasitic pressure variability. The different production systems do not give to winegrowers the same possibilities for adapting practices to limit their impact on the environment.

  相似文献   
147.
This study describes the identification of the key enzyme activities required in a "minimal" enzyme cocktail able to catalyze hydrolysis of water-soluble and water-insoluble wheat arabinoxylan and whole vinasse, a fermentation effluent resulting from industrial ethanol manufacture from wheat. The optimal arabinose-releasing and xylan-depolymerizing enzyme activities were identified from data obtained when selected, recombinant enzymes were systematically supplemented to the different arabinoxylan substrates in mixtures; this examination revealed three novel alpha-l-arabinofuranosidase activities: (i) one GH51 enzyme from Meripilus giganteus and (ii) one GH51 enzyme from Humicola insolens, both able to catalyze arabinose release from singly substituted xylose; and (iii) one GH43 enzyme from H. insolens able to catalyze the release of arabinose from doubly substituted xylose. Treatment of water-soluble and water-insoluble wheat arabinoxylan with an enzyme cocktail containing a 20%:20%:20%:40% mixture and a 25%:25%:25%:25% mixture, respectively, of the GH43 alpha-l-arabinofuranosidase from H. insolens (Abf II), the GH51 alpha-l-arabinofuranosidase from M. giganteus (Abf III), a GH10 endo-1,4-beta-xylanase from H. insolens (Xyl III), and a GH3 beta-xylosidase from Trichoderma reesei (beta-xyl) released 322 mg of arabinose and 512 mg of xylose per gram of water-soluble wheat arabinoxylan dry matter and 150 mg of arabinose and 266 mg of xylose per gram of water-insoluble wheat arabinoxylan dry matter after 24 h at pH 5, 50 degrees C. A 10%:40%:50% mixture of Abf II, Abf III, and beta-xyl released 56 mg of arabinose and 91 mg of xylose per gram of vinasse dry matter after 24 h at pH 5, 50 degrees C. The optimal dosages of the "minimal" enzyme cocktails were determined to be 0.4, 0.3, and 0.2 g enzyme protein per kilogram of substrate dry matter for the water-soluble wheat arabinoxylan, the water-insoluble wheat arabinoxylan, and the vinasse, respectively. These enzyme protein dosage levels were approximately 14, approximately 18, and approximately 27 times lower than the dosages used previously, when the same wheat arabinoxylan substrates were hydrolyzed with a combination of Ultraflo L and Celluclast 1.5 L, two commercially available enzyme preparations produced by H. insolens and T. reesei.  相似文献   
148.
Ginkgotoxin (4'-O-methylpyridoxine) occurring in the seeds and leaves of Ginkgo biloba, is an antivitamin structurally related to vitamin B(6). Ingestion of ginkgotoxin triggers epileptic convulsions and other neuronal symptoms. Here we report on studies on the impact of B(6) antivitamins including ginkgotoxin on recombinant homogeneous human pyridoxal kinase (EC 2.7.1.35). It is shown that ginkgotoxin serves as an alternate substrate for this enzyme with a lower K(m) value than pyridoxal, pyridoxamine or pyridoxine. Thus, the presence of ginkgotoxin leads to temporarily reduced pyridoxal phosphate formation in vitro and possibly also in vivo. Our observations are discussed in light of Ginkgo medications used as nootropics.  相似文献   
149.
The aim was to investigate how short rotation coppice (SRC) on arable soil in Northern Germany altered the concentrations of soil lipids, and thus, soil organic matter (SOM) quality. The concentrations of organic C and aliphatic lipids were determined in the litter and underlying soil layers under two willow (Salix caprea × viminalis clone 6, S. viminalis clone 78–183) and two poplar (Populus trichocarpa × deltoides cv. Beaupré, P. nigra × maximowiczii cv. Max 4) clones at a 14-year-old SRC and a permanent arable reference site. High organic C concentrations in the topsoil under S. viminalis and P. trichocarpa × deltoides agreed with high concentrations of long C-chain saturated n-alkanoic acids, n-alkanols and n-alkanes. These disproportionally higher concentrations of long C-chain saturated n-alkanoic acids (factor 3.6) and n-alkanols (factor 3.8) under S. viminalis and of n-alkanols (factor 3.9) under P. trichocarpa × deltoides than in an arable reference treatment indicated a lower microbial decomposability and, thus, a clone-specific accumulation of these SOM constituents. The clone-specific enrichments in long C-chain saturated n-alkanoic acids, n-alkanols and n-alkanes indicate that clone selection may be an approach to additional long-term storage of atmosphere CO2 in the form of stable SOM under SRC.  相似文献   
150.
Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号