首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6777篇
  免费   496篇
  国内免费   3篇
  7276篇
  2021年   57篇
  2020年   51篇
  2019年   53篇
  2018年   71篇
  2017年   69篇
  2016年   104篇
  2015年   170篇
  2014年   198篇
  2013年   261篇
  2012年   318篇
  2011年   332篇
  2010年   222篇
  2009年   177篇
  2008年   288篇
  2007年   332篇
  2006年   333篇
  2005年   315篇
  2004年   340篇
  2003年   270篇
  2002年   315篇
  2001年   128篇
  2000年   108篇
  1999年   105篇
  1998年   95篇
  1997年   94篇
  1996年   88篇
  1995年   74篇
  1994年   80篇
  1993年   81篇
  1992年   104篇
  1991年   76篇
  1990年   82篇
  1989年   79篇
  1988年   70篇
  1987年   70篇
  1986年   52篇
  1985年   73篇
  1984年   103篇
  1983年   69篇
  1982年   103篇
  1981年   85篇
  1980年   97篇
  1979年   98篇
  1978年   82篇
  1977年   83篇
  1976年   60篇
  1975年   46篇
  1974年   51篇
  1972年   49篇
  1970年   46篇
排序方式: 共有7276条查询结果,搜索用时 0 毫秒
141.

Background

In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal Findings

DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion

Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to nTreg cell-mediated suppression.  相似文献   
142.
143.
Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5′ extensions, is the methyltransferase responsible for m1G9 and m1A9 formation. The ability of the mitochondrial tRNA:m1R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5′ end processing.  相似文献   
144.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.  相似文献   
145.
Schuller KA  Werner D 《Plant physiology》1993,101(4):1267-1273
Phosphoenolpyruvate carboxylase (PEPC) from soybean (Glycine max L.Merr.) nodules was purified 187-fold to a final specific activity of 56 units mg-1 of protein. Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) revealed one major polypeptide band, with a molecular mass of 110 kD, after the final purification step. Two-dimensional PAGE resolved four isoelectric forms of the purified enzyme. Antibodies raised against the purified enzyme immunoprecipitated PEPC activity from a desalted nodule extract. Two cross-reacting bands were obtained when protein immunoblots of crude nodule extracts subjected to SDS-PAGE were probed with the antiserum. One of these corresponded to the 110-kD subunit of PEPC, and the other had a molecular mass of about 60 kD. PEPC was shown to be activated in a time-dependent manner when desalted soybean nodule extracts were preincubated with Mg.ATP in vitro. Activation was observed when PEPC was assayed at pH 7 in the absence of glycerol but not at pH 8 in the presence of glycerol. When o.5 mM L-malate was included in the assay, activation was much more pronounced than without malate. Maximal activation was 30% in the absence of L-malate and 200% in its presence. The L-malate concentrations producing 50% inhibition of PEPC activity were o.35 and 1.24 mM, respectively, before and after preincubation with Mg.ATP. The antiserum against soybean nodule PEPC was used to immunoprecipitate PEPC from a desalted nodule extract that had been preincubated with Mg.[[gamma]-32P]ATP. The immunoprecipitate was then subjected to SDS-PAGE, followed by autoradiography. The autoradiograph revealed intense labeling of the 110-kD subunit of PEPC following preincubation with [[gamma]-32P]ATP. The data suggest that soybean nodule PEPC becomes phosphorylated by an endogenous protein kinase, resulting in decreased sensitivity of the enzyme to inhibition by L-malate in vitro. The results are discussed in relation to the proposed functions of PEPC in legume nodules.  相似文献   
146.
Specific nitrogenase activity inAzospirillum brasilense ATCC 29145 in surface cultures under air is enhanced from about 50 nmol C2H4·mg protein-1·h-1 to 400 nmol C2H4 by the addition of 1 mM phenol. 0.5 and 2 mM phenol added increase the rate 5-fold and 4-fold. This enhancement effect is observed only between 2 and 3 days after inoculation, with only a small reduction of the growth of the cells by the phenol added. In surface cultures under 1% O2, nitrogenase activity is slightly reduced by the addition of 1–0.01 mM phenol. Utilization of succinate is enhanced during the period of maximum enhancement of nitrogenase activity by 60% by addition of 1 mM phenol. The cells did not produce14CO2 from [U-14C] phenol, neither in surface cultures nor in liquid cultures and less than 0.1% of the phenol was incorporated into the cells. A smaller but significant enhancement of nitrogenase activity by about 100% in surface cultures under air was found withKlebsiella pneumoniae K 11 after addition of 1 mM phenol. However, inRhizobium japonicum 61-A-101 all phenol concentrations above 0.01 mM reduced nitrogenase activity. With 1 mM phenol added activity was reduced to less than 10% with no effect on the growth in the same cultivation system. With thisRhizobium japonicum strain significant quantities of phenol (25 mol in 24 h by 2·1012 cells) were metabolized to14CO2, with phenol as sole carbon source. WithAzospirillum brasilense in liquid culture under 1% and 2% O2 in the gas phase, no enhancement of nitrogenase activity by phenol was noticed.  相似文献   
147.
148.
149.
We determine the density profile and velocity of invasion fronts in one-dimensional infinite habitats in the presence of environmental fluctuations. The population dynamics is reformulated in terms of a stochastic reaction-diffusion equation and is reduced to a deterministic equation that incorporates the systematic contributions of the noise. We obtain analytical expressions for the front profile and velocity by constructing a variational principle. The effect of the noise differs, depending on whether it affects the density-independent growth rate, the intraspecific competition term or the Allee threshold. Fluctuations in the density-independent growth rate increase the invasion velocity and the population density of the invaded area. Fluctuations in the competition term also change the population density of the invaded area, but modify the invasion velocity only for certain initial conditions. Fluctuations in the Allee threshold can induce pulled or pushed invasion fronts as well as invasion failure. We compare our analytical results with numerical solutions of the stochastic partial differential equations and show that our procedure proves useful in dealing with reaction-diffusion equations with multiplicative noise.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号