首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   26篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   17篇
  2014年   12篇
  2013年   22篇
  2012年   36篇
  2011年   17篇
  2010年   15篇
  2009年   12篇
  2008年   33篇
  2007年   29篇
  2006年   21篇
  2005年   21篇
  2004年   20篇
  2003年   16篇
  2002年   21篇
  2001年   17篇
  2000年   23篇
  1999年   21篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1974年   3篇
  1970年   4篇
  1969年   3篇
  1968年   1篇
  1962年   1篇
  1958年   1篇
  1930年   1篇
  1913年   2篇
  1912年   7篇
  1907年   1篇
  1860年   1篇
排序方式: 共有482条查询结果,搜索用时 187 毫秒
51.
Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre+/−xRtn4/Nogo-Aflox/flox) and neuron-specific (Thy1-Cretg+xRtn4flox/flox) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4flox/flox animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS.In the adult mammalian central nervous system (CNS), axons have a very limited capacity to regenerate after traumatic injury. This lack of axonal regeneration is thought to be mainly due to the presence of growth-inhibiting molecules in the injured CNS environment1, 2 and due to the low intrinsic growth capacity of mature neurons.3Nogo-A is a well-studied inhibitory protein for axonal growth, plasticity and regeneration after CNS injury.4, 5 Nogo-A is predominantly expressed in oligodendrocytes in the adult CNS, where it is thought to stabilize the neuronal circuits in healthy conditions and to inhibit neurite growth and plasticity after lesion.2 Neutralizing Nogo-A by function-blocking antibodies or genetic knockout (KO) has been shown to improve axonal sprouting and regeneration in the injured spinal cord and brain.6, 7, 8, 9, 10, 11In addition to oligodendrocytes and myelin, Nogo-A is expressed in growing and immature neurons, as well as in some adult neurons.12, 13 Neurons express Nogo-A receptors such as the Nogo-66 receptor 1 (NgR1)14 and the Nogo-A-Δ20-specific sphingosine 1-phosphate receptor 2 (S1PR2).15 They can co-express them along with Nogo-A,13 an observation that raises the possibility of cis-interactions between the ligand and its receptors within or at the cell surface of the same cell. This mechanism has previously been described for axonal guidance molecules such as Ephrins and Semaphorins, and could have a major role in the neuronal response to extracellular growth inhibitors during development.16, 17In the adult CNS, the expression of neuronal Nogo-A remains elevated mainly in plastic regions such as in the hippocampus, olfactory bulb or neocortex, and in the dorsal root ganglia.12 Nogo-A and NgR1 were shown to regulate synaptic plasticity, for example, long-term potentiation in the hippocampus and in the sensory-motor cortex,18, 19, 20, 21, 22 whereas the effects of neuronal Nogo-A after injury are not yet well understood. During development, neuronal Nogo-A influences neuronal migration,23, 24 survival,25, 26 cell spreading and neurite growth.27, 28 In injured adult retinal ganglion cells (RGCs), silencing neuronal Nogo-A resulted in a marked reduction of regenerative sprouting and decreased expression of growth-associated molecules.29 Furthermore, in the optic nerve, axonal regeneration was not improved in conventional Nogo-A KO animals, in which both glial and neuronal Nogo-A were deleted.29 The present study therefore aimed to investigate whether glial and neuronal Nogo-A differently influence axonal growth in vivo using cell type-specific Nogo-A KO mouse lines and adeno-associated virus (AAV)-mediated recombination of the Nogo-A gene in neurons. The results show that significantly more axons grew through the lesion site in the oligodendrocyte-specific Nogo-A KO mice. In contrast, neuron-specific ablation of Nogo-A in RGCs reduced the number of regenerating axons after optic nerve crush injury (ONC). In summary, we show that inactivating Nogo-A specifically in oligodendrocytes appears to be the most successful strategy to promote axonal regeneration in the adult optic nerve.  相似文献   
52.
A study was performed on the influence of wood variability on char steam gasification kinetics. Isothermal experiments were carried out in a thermobalance in chemical regime on various wood chars produced under the same conditions. The samples exhibited large differences of average reaction rate. These differences were linked neither with the biomass species nor age and may be related to the biomass inorganic elements. A modelling approach was developed to give a quantitative insight to these observations. The grain model was used on one biomass of reference for temperatures between 750 and 900 °C and steam partial pressures between 0 and 0.27 bar. The model was applied to the other samples through the addition of an integral parameter specific to each sample. A satisfactory correlation was found between this parameter and the ratio potassium/silicium. This result highlighted the catalytic effect of potassium and inhibitor effect of silicium on the reaction.  相似文献   
53.
Apoptosis has been attributed an essential role in dilated cardiomyopathy (DCM) recently. We assessed expression of TNF-related apoptosis-inducing ligand (TRAIL) and its decoy receptor osteoprotegerin (OPG) in men with nonischemic DCM, who underwent coronary angiography and endomyocardial biopsy (EMB) after exclusion of coronary artery disease compared to control patients. TRAIL plasma concentrations were elevated in DCM (p=0.02 vs. controls), and were positively correlated with left ventricular enddiastolic diameter (r=0.15, p=0.04), whereas OPG plasma levels did not differ between both groups (p=0.96). In EMB of DCM patients, TRAIL and OPG protein were detected by immunohistochemistry but not in controls. Furthermore, gene expression in EMB or peripheral blood leukocytes (PBL) of DCM patients assessed by real-time PCR showed an increase of TRAIL mRNA in PBL (p=0.01 vs. controls), whereas OPG mRNA was upregulated in endomyocardial specimens (p<0.001 vs. controls). In conclusion, myocardial overexpression of antiapoptotic OPG in DCM patients may represent a compensatory mechanism to limit systemic activation of TRAIL in patients with congestive heart disease.  相似文献   
54.
Long runs of seasonal rotifer population data allow analysis of seasonal occurrence using mathematical tools. The application of Fourier analysis to a 15 year dataset describes seasonality in simple mathematical terms. This facilitates comparison of population expression with potential population driving variables and provides a basic modelling tool. Results show that annual patterns of occurrence and density have linkages with annual maximum and minimum environmental temperature, although the exact relationships are not clear.  相似文献   
55.
56.
The mechanical properties of tissues are increasingly recognized as important cues for cell physiology and pathology. Nevertheless, there is a sparsity of quantitative, high-resolution data on mechanical properties of specific tissues. This is especially true for the central nervous system (CNS), which poses particular difficulties in terms of preparation and measurement. We have prepared thin slices of brain tissue suited for indentation measurements on the micrometer scale in a near-native state. Using a scanning force microscope with a spherical indenter of radius ~20 μm we have mapped the effective elastic modulus of rat cerebellum with a spatial resolution of 100 μm. We found significant differences between white and gray matter, having effective elastic moduli of K=294±74 and 454±53 Pa, respectively, at 3 μm indentation depth (ng=245, nw=150 in four animals, p<0.05; errors are SD). In contrast to many other measurements on larger length scales, our results were constant for indentation depths of 2–4 μm indicating a regime of linear effective elastic modulus. These data, assessed with a direct mechanical measurement, provide reliable high-resolution information and serve as a quantitative basis for further neuromechanical investigations on the mechanical properties of developing, adult and damaged CNS tissue.  相似文献   
57.
Various components of innate and adaptive immunity contribute to host defenses against Plasmodium infection. We investigated the contribution of NK cells to the immune response to primary infection with Plasmodium yoelii sporozoites in C57BL/6 mice. We found that hepatic and splenic NK cells were activated during infection and displayed different phenotypic and functional properties. The number of hepatic NK cells increased whereas the number of splenic NK cells decreased. Expression of the Ly49 repertoire was modified in the spleen but not in the liver. Splenic and hepatic NK cells have a different inflammatory cytokines profile production. In addition, liver NK cells were cytotoxic to YAC-1 cells and P. yoelii liver stages in vitro but not to erythrocytic stages. No such activity was observed with splenic NK cells from infected mice. These in vitro results were confirmed by the in vivo observation that Rag2(-/-) mice were more resistant to sporozoite infection than Rag2(-/-) gamma c(-/-) mice, whereas survival rates were similar for the two strains following blood-stage infection. Thus, NK cells are involved in early immune mechanisms controlling Plasmodium infection, mostly at the pre-erythrocytic stage.  相似文献   
58.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>10(9) transformants in Escherichia coli and 10(5)-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   
59.
Holoprosencephaly (HPE), the most common structural malformation of the forebrain in humans, can be detected early during pregnancy using prenatal ultrasonography . Among foetuses with a normal karyotype, 14% have mutations in the four main HPE genes (SHH, ZIC2, SIX3 and TGIF). Genomic rearrangements have now been implicated in many genetic diseases, so we hypothesized that microdeletions in the major HPE genes may also be common in HPE foetuses with severe phenotype or other associated malformations. We screened the DNA obtained from 94 HPE foetuses with a normal karyotype for the presence of microdeletions involving the four major HPE genes (SHH, ZIC2, SIX3 and TGIF). Thirteen of the foetuses had a point mutation in one of the 4 genes and 81 had no known mutations. Quantitative multiplex PCR of short fluorescent fragments (QMPSF) analysis was used for rapid determination of HPE genes copy numbers and the identified microdeletions were confirmed by real time quantitative PCR, or fluorescent in situ hybridization (FISH) (if a cell line was available). Microdeletions were detected in 8 of 94 foetuses (8.5%) (2 in SHH, 2 in SIX3, 3 in ZIC2 and 1 in TGIF genes), and only among the 81 foetuses with a normal karyotype and no point mutations. These data suggest that microdeletions in the four main HPE genes are a common cause of prenatal HPE, as well as point mutations, and increase the total diagnosis rate close to ≈22.3% of foetuses with normal karyotype. Detection can be achieved by the QMPSF testing method that proved to be efficient for testing several genes in a single assay. Databases: SHH - OMIM: 600725; GenBank: NM_000193.2, ZIC2 - OMIM: 603073; GenBank: AF104902.1, SIX3 - OMIM: 603714; GenBank: NM_005413.1, TGIF - OMIM: 602630; GenBank: NM_003244.2, On-line Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/omim/, UCSC (http://www.genome.ucsc.edu/), Ensembl (http://www.ensembl.org/), Database of genomic variants (http://projects.tcag.ca/variation/genomeView.html)  相似文献   
60.
Protein tyrosine phosphatases (PTPs) play key roles in regulating tyrosine phosphorylation levels in cells. Since the discovery of PTP1B as a major drug target for diabetes and obesity, PTPs have emerged as a new and promising class of signaling targets for drug development in a variety of therapeutic areas. The routine use of generic substrate 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) in our hands led to the discovery of very similar and often not very selective molecules. Therefore, to increase the chances to discover novel chemical scaffolds, a side-by-side comparison between the DiFMUP assay and a chip-based mobility shift assay with a specific phosphopeptide was performed, on 1 PTP, using a focused set of compounds. Assay robustness and sensitivity were comparable for both the DiFMUP and mobility shift assays. The off-chip mobility shift assay required a longer development time because of identification, synthesis, and characterization of a specific peptide, and its cost per point was higher. However, although most potent scaffolds found with the DiFMUP assay were confirmed in the mobility shift format, the off-chip mobility shift assay led to the identification of previously unidentified chemical scaffolds with improved druglike properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号