首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8997篇
  免费   843篇
  国内免费   4篇
  2023年   41篇
  2022年   53篇
  2021年   163篇
  2020年   122篇
  2019年   165篇
  2018年   163篇
  2017年   162篇
  2016年   254篇
  2015年   492篇
  2014年   481篇
  2013年   539篇
  2012年   783篇
  2011年   751篇
  2010年   418篇
  2009年   405篇
  2008年   593篇
  2007年   546篇
  2006年   537篇
  2005年   537篇
  2004年   508篇
  2003年   450篇
  2002年   391篇
  2001年   130篇
  2000年   86篇
  1999年   111篇
  1998年   103篇
  1997年   76篇
  1996年   66篇
  1995年   58篇
  1994年   67篇
  1993年   35篇
  1992年   57篇
  1991年   49篇
  1990年   41篇
  1989年   33篇
  1988年   39篇
  1987年   25篇
  1986年   24篇
  1985年   26篇
  1984年   35篇
  1983年   26篇
  1982年   28篇
  1981年   21篇
  1980年   14篇
  1978年   13篇
  1977年   10篇
  1976年   10篇
  1975年   13篇
  1973年   14篇
  1972年   9篇
排序方式: 共有9844条查询结果,搜索用时 31 毫秒
161.
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter‐ and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified “indicator” compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.  相似文献   
162.
Primates - Habitat fragmentation is one of the major types of anthropogenic change, though fragmented landscapes predate human intervention. At present, the Central Highlands of Madagascar are...  相似文献   
163.
164.

Reef monitoring programmes often focus on limited sites, predominantly on reef slope areas, which do not capture compositional variability across zones. This study assessed spatial and temporal changes in hard coral cover at four hierarchical spatial scales. ~ 55,000, geo-referenced photoquadrats were collected annually from 2002 to 2018 and analysed using artificial intelligence for 31 sites across reef flat and reef slope zones on Heron Reef, Southern Great Barrier Reef, Australia. Trends in hard coral cover were examined at three spatial scales: (1) “reef scale”, all data; (2) “geomorphic zone scale”—north/south reef slope, inner/outer reef flat; and (3) “site scale”—31 sites. Coral cover trajectories were also examined at: (4) “sub-site scale”—sub-division of sites into 567 sub-sites, to estimate variability in coral cover trajectories via spatial statistical modelling. At reef scale coral cover increased over time to 25.6 ± 0.4 SE % in 2018 but did not recover following disturbances caused by disease (2004–2008), cyclonic conditions (2009) or severe storms (2015) to the observed pre-disturbance level (44.0 ± 0.7 SE %) seen in 2004. At geomorphic zone scale, the reef slope had significantly higher coral cover than the reef flat. Trends of decline and increase were visible in the slope zones, and the southern slope recovered to pre-decline levels. Variable coral cover trends were visible at site scale. Furthermore, sub-site spatial modelling captured eight years of coral recovery that occurred at different times and magnitudes across the four geomorphic zones, effectively estimating variability in the trajectory of the reef’s coral community. Derived spatial predictions for the entire reef show patchy coral recovery, particularly on the southern slope, and that recovery hotspots are distributed across the reef. These findings suggest that to fully understand and interpret coral decline or recovery on a reef, more accurate assessment can be achieved by examining sites distributed within different geomorphic zones to capture variation in exposure, depth and consolidation.

  相似文献   
165.
The International Journal of Life Cycle Assessment - The flexibility of life cycle inventory (LCI) background data selection is increasing with the increasing availability of data, but this comes...  相似文献   
166.
167.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   
168.
169.
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.  相似文献   
170.
Hydrobiologia - Aphanius fasciatus is a small fish occurring in Mediterranean brackish environments. In Cyprus it is known from three localities separated by long stretches of coast. The genetic...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号