首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8718篇
  免费   771篇
  国内免费   3篇
  9492篇
  2024年   7篇
  2023年   42篇
  2022年   90篇
  2021年   160篇
  2020年   123篇
  2019年   163篇
  2018年   160篇
  2017年   158篇
  2016年   261篇
  2015年   487篇
  2014年   473篇
  2013年   533篇
  2012年   781篇
  2011年   744篇
  2010年   414篇
  2009年   398篇
  2008年   577篇
  2007年   524篇
  2006年   546篇
  2005年   511篇
  2004年   496篇
  2003年   426篇
  2002年   383篇
  2001年   109篇
  2000年   76篇
  1999年   94篇
  1998年   92篇
  1997年   73篇
  1996年   62篇
  1995年   52篇
  1994年   67篇
  1993年   35篇
  1992年   41篇
  1991年   36篇
  1990年   36篇
  1989年   25篇
  1988年   25篇
  1987年   17篇
  1986年   20篇
  1985年   19篇
  1984年   32篇
  1983年   17篇
  1982年   20篇
  1981年   17篇
  1980年   10篇
  1979年   7篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1973年   10篇
排序方式: 共有9492条查询结果,搜索用时 0 毫秒
61.
The pathogenic oomycete Aphanomyces invadans is the primary etiological agent in ulcerative mycosis, an ulcerative skin disease caused by a fungus-like agent of wild and cultured fish. We developed sensitive PCR and fluorescent peptide nucleic acid in situ hybridization (FISH) assays to detect A. invadans. Laboratory-challenged killifish (Fundulus heteroclitus) were first tested to optimize and validate the assays. Skin ulcers of Atlantic menhaden (Brevoortia tyrannus) from populations found in the Pamlico and Neuse River estuaries in North Carolina were then surveyed. Results from both assays indicated that all of the lesioned menhaden (n = 50) collected in September 2004 were positive for A. invadans. Neither the FISH assay nor the PCR assay cross-reacted with other closely related oomycetes. These results provided strong evidence that A. invadans is the primary oomycete pathogen in ulcerative mycosis and demonstrated the utility of the assays. The FISH assay is the first molecular assay to provide unambiguous visual confirmation that hyphae in the ulcerated lesions were exclusively A. invadans.  相似文献   
62.
63.
Antibodies to the pre-erythrocytic antigens, circumsporozoite protein (CSP), thrombospondin-related adhesive protein (TRAP) and liver-stage antigen 1, have been measured in field studies of semi-immune adults and shown to correlate with protection from Plasmodium falciparum infection. A mathematical model is formulated to estimate the probability of sporozoite infection as a function of antibody titres to multiple pre-erythrocytic antigens. The variation in antibody titres from field data was used to estimate the relationship between the probability of P. falciparum infection per infectious mosquito bite and antibody titre. Using this relationship, we predict the effect of vaccinations that boost baseline CSP or TRAP antibody titres. Assuming the estimated relationship applies to vaccine-induced antibody titres, then single-component CSP or TRAP antibody-mediated pre-erythrocytic vaccines are likely to provide partial protection from infection, with vaccine efficacy of approximately 50 per cent depending on the magnitude of the vaccine-induced boost to antibody titres. It is possible that the addition of a TRAP component to a CSP-based vaccine such as RTS,S would provide an increase in infection-blocking efficacy of approximately 25 per cent should the problem of immunological interference between antigens be overcome.  相似文献   
64.
Dollo’s law posits that evolutionary losses are irreversible, thereby narrowing the potential paths of evolutionary change. While phenotypic reversals to ancestral states have been observed, little is known about their underlying genetic causes. The genomes of budding yeasts have been shaped by extensive reductive evolution, such as reduced genome sizes and the losses of metabolic capabilities. However, the extent and mechanisms of trait reacquisition after gene loss in yeasts have not been thoroughly studied. Here, through phylogenomic analyses, we reconstructed the evolutionary history of the yeast galactose utilization pathway and observed widespread and repeated losses of the ability to utilize galactose, which occurred concurrently with the losses of GALactose (GAL) utilization genes. Unexpectedly, we detected multiple galactose-utilizing lineages that were deeply embedded within clades that underwent ancient losses of galactose utilization. We show that at least two, and possibly three, lineages reacquired the GAL pathway via yeast-to-yeast horizontal gene transfer. Our results show how trait reacquisition can occur tens of millions of years after an initial loss via horizontal gene transfer from distant relatives. These findings demonstrate that the losses of complex traits and even whole pathways are not always evolutionary dead-ends, highlighting how reversals to ancestral states can occur.  相似文献   
65.
Rab5 and Rab4 are small monomeric GTPases localized on early endosomes and function in vesicle fusion events. These Rab proteins regulate the endocytosis and recycling or degradation of activated receptor tyrosine kinases such as the platelet-derived growth factor receptor (PDGFR). The p85alpha subunit of phosphatidylinositol 3'-kinase contains a BH domain with sequence homology to GTPase activating proteins (GAPs), but has not previously been shown to possess GAP activity. In this report, we demonstrate that p85alpha has GAP activity toward Rab5, Rab4, Cdc42, Rac1 and to a lesser extent Rab6, with little GAP activity toward Rab11. Purified recombinant Rab5 and p85alpha can bind directly to each other and not surprisingly, the p85alpha-encoded GAP activity is present in the BH domain. Because p85alpha stays bound to the PDGFR during receptor endocytosis, p85alpha will also be localized to the same early endosomal compartment as Rab5 and Rab4. Taken together, the physical co-localization and the ability of p85alpha to preferentially stimulate the down-regulation of Rab5 and Rab4 GTPases suggests that p85alpha regulates how long Rab5 and Rab4 remain in their GTP-bound active state. Cells expressing BH domain mutants of p85 show a reduced rate of PDGFR degradation as compared with wild type p85 expressing cells. These cells also show sustained activation of the mitogen-activated protein kinase and Akt pathways. Thus, the p85alpha protein may play a role in the down-regulation of activated receptors through its temporal control of the GTPase cycles of Rab5 and Rab4.  相似文献   
66.
Meiotic crossovers/chiasmata, that are required to ensure chromosome disjunction, arise via the class I interference-dependent pathway or via the class II interference-free pathway. The proportions of these two classes vary considerably between different organisms. In Arabidopsis, about 85% of chiasmata are eliminated in Atmsh4 mutants, denoting that these are class I events. In budding and fission yeasts Msh4-independent crossovers arise largely or entirely via a Mus81-dependent pathway. To investigate the origins of the 15% residual (AtMSH4-independent) chiasmata in Arabidopsis we conducted a cytological and molecular analysis of AtMUS81 meiotic expression and function. Although AtMUS81 functions in somatic DNA repair and recombination, it is more highly expressed in reproductive tissues. The protein is abundantly present in early prophase I meiocytes, where it co-localizes, in a double-strand break-dependent manner, with the recombination protein AtRAD51. Despite this, an Atmus81 mutant shows normal growth and has no obvious defects in reproductive development that would indicate meiotic impairment. A cytological analysis confirmed that meiosis was apparently normal in this mutant and its mean chiasma frequency was similar to that of wild-type plants. However, an Atmsh4 / Atmus81 double mutant revealed a significantly reduced mean chiasma frequency (0.85 per cell), compared with an Atmsh4 single mutant (1.25 per cell), from which we conclude that AtMUS81 accounts for some, but not all, of the 15% AtMSH4-independent residual crossovers. It is possible that other genes are responsible for these residual chiasmata. Alternatively the AtMUS81 pathway coexists with an alternative parallel pathway that can perform the same functions.  相似文献   
67.
Opsanus beta expresses a full complement of ornithine–urea cycle (OUC) enzymes and is facultatively ureotelic, reducing ammonia-N excretion and maintaining urea-N excretion under conditions of crowding/confinement. The switch to ureotelism is keyed by a modest rise in cortisol associated with a substantial increase in cytosolic glutamine synthetase for trapping of ammonia-N and an upregulation of the capacity of the mitochondrial OUC to use glutamine-N. The entire day's urea-N production is excreted in 1 or 2 short-lasting pulses, which occur exclusively through the gills. The pulse event is not triggered by an internal urea-N threshold, is not due to pulsatile urea-N production, but reflects pulsatile activation of a specific branchial excretion mechanism that rapidly clears urea-N from the body fluids. A bidirectional facilitated diffusion transporter, with pharmacological similarity to the UT-A type transporters of the mammalian kidney, is activated in the gills, associated with an increased trafficking of dense-cored vesicles in the pavement cells. An 1814 kB cDNA (‘tUT’) coding for a 475–amino acid protein with approximately 62% homology to mammalian UT-A's has been cloned and facilitates phloretin-sensitive urea transport when expressed in Xenopus oocytes. tUT occurs only in gill tissue, but tUT mRNA levels do not change over the pulse cycle, suggesting that tUT regulation occurs at a level beyond mRNA. Circulating cortisol levels consistently decline prior to a pulse event and rise thereafter. When cortisol is experimentally clamped at high levels, natural pulse events are suppressed in size but not in frequency, an effect mediated through glucocorticoid receptors. The cortisol decline appears to be permissive, rather than the actual trigger of the pulse event. Fluctuations in circulating AVT levels do not correlate with pulses; and injections of AVT (at supraphysiological levels) elicit only minute urea-N pulses. However, circulating 5-hydroxytryptamine (5-HT) levels fluctuate considerably and physiological doses of 5-HT cause large urea-N pulse events. When the efferent cranial nerves to the gills are sectioned, natural urea pulse events persist, suggesting that direct motor output from the CNS to the gill is not the proximate control.  相似文献   
68.
D6 scavenges inflammatory chemokines and is essential for the regulation of inflammatory and immune responses. Mechanisms explaining the cellular basis for D6 function have been based on D6 expression by lymphatic endothelial cells. In this study, we demonstrate that functional D6 is also expressed by murine and human hemopoietic cells and that this expression can be regulated by pro- and anti-inflammatory agents. D6 expression was highest in B cells and dendritic cells (DCs). In myeloid cells, LPS down-regulated expression, while TGF-beta up-regulated expression. Activation of T cells with anti-CD3 and soluble CD28 up-regulated mRNA expression 20-fold, while maturation of human macrophage and megakaryocyte precursors also up-regulated D6 expression. Competition assays demonstrated that chemokine uptake was D6 dependent in human leukocytes, whereas mouse D6-null cells failed to uptake and clear inflammatory chemokines. Furthermore, we present evidence indicating that D6 expression is GATA1 dependent, thus explaining D6 expression in myeloid progenitor cells, mast cells, megakaryocytes, and DCs. We propose a model for D6 function in which leukocytes, within inflamed sites, activate D6 expression and thus trigger resolution of inflammatory responses. Our data on D6 expression by circulating DCs and B cells also suggest alternative roles for D6, perhaps in the coordination of innate and adaptive immune responses. These data therefore alter our models of in vivo D6 function and suggest possible discrete, and novel, roles for D6 on lymphatic endothelial cells and leukocytes.  相似文献   
69.

Background

Serum total cholesterol is one of the major targets for cardiovascular disease prevention. Statins are effective for cholesterol control in individual patients. At the population level, however, their contribution to total cholesterol decline remains unclear. The aim of this study was to quantify the contribution of statins to the observed fall in population mean cholesterol levels in England over the past two decades, and explore any differences between socioeconomic groups.

Methods and Findings

This is a modelling study based on data from the Health Survey for England. We analysed changes in observed mean total cholesterol levels in the adult England population between 1991-92 (baseline) and 2011-12. We then compared the observed changes with a counterfactual ‘no statins’ scenario, where the impact of statins on population total cholesterol was estimated and removed. We estimated uncertainty intervals (UI) using Monte Carlo simulation, where confidence intervals (CI) were impractical. In 2011-12, 13.2% (95% CI: 12.5-14.0%) of the English adult population used statins at least once per week, compared with 1991-92 when the proportion was just 0.5% (95% CI: 0.3-1.0%). Between 1991-92 and 2011-12, mean total cholesterol declined from 5.86 mmol/L (95% CI: 5.82-5.90) to 5.17 mmol/L (95% CI: 5.14-5.20). For 2011-12, mean total cholesterol was lower in more deprived groups. In our ‘no statins’ scenario we predicted a mean total cholesterol of 5.36 mmol/L (95% CI: 5.33-5.40) for 2011-12. Statins were responsible for approximately 33.7% (95% UI: 28.9-38.8%) of the total cholesterol reduction since 1991-92. The statin contribution to cholesterol reduction was greater among the more deprived groups of women, while showing little socio-economic gradient among men.

Conclusions

Our model suggests that statins explained around a third of the substantial falls in total cholesterol observed in England since 1991. Approximately two thirds of the cholesterol decrease can reasonably be attributed non-pharmacological determinants.  相似文献   
70.
Latency Associated Peptide (LAP) binds TGF-beta1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-beta1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-beta1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-beta1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号