全文获取类型
收费全文 | 12126篇 |
免费 | 1193篇 |
国内免费 | 3篇 |
专业分类
13322篇 |
出版年
2023年 | 51篇 |
2022年 | 104篇 |
2021年 | 198篇 |
2020年 | 143篇 |
2019年 | 197篇 |
2018年 | 191篇 |
2017年 | 197篇 |
2016年 | 307篇 |
2015年 | 565篇 |
2014年 | 575篇 |
2013年 | 642篇 |
2012年 | 897篇 |
2011年 | 855篇 |
2010年 | 496篇 |
2009年 | 482篇 |
2008年 | 728篇 |
2007年 | 666篇 |
2006年 | 651篇 |
2005年 | 649篇 |
2004年 | 602篇 |
2003年 | 534篇 |
2002年 | 473篇 |
2001年 | 219篇 |
2000年 | 174篇 |
1999年 | 168篇 |
1998年 | 150篇 |
1997年 | 128篇 |
1996年 | 103篇 |
1995年 | 97篇 |
1994年 | 93篇 |
1993年 | 83篇 |
1992年 | 133篇 |
1991年 | 123篇 |
1990年 | 116篇 |
1989年 | 84篇 |
1988年 | 98篇 |
1987年 | 91篇 |
1986年 | 83篇 |
1985年 | 87篇 |
1984年 | 85篇 |
1983年 | 53篇 |
1982年 | 55篇 |
1981年 | 61篇 |
1979年 | 61篇 |
1978年 | 71篇 |
1977年 | 44篇 |
1976年 | 43篇 |
1973年 | 38篇 |
1972年 | 48篇 |
1971年 | 44篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Gabriel M. Pedroso Chris van Kessel Johan Six Daniel H. Putnam Bruce A. Linquist 《Global Change Biology Bioenergy》2014,6(6):704-716
Sustainable and environmentally benign switchgrass production systems need to be developed for switchgrass to become a large‐scale dedicated energy crop. An experiment was conducted in California from 2009 to 2011 to determine the sustainability of low‐ and high‐input irrigated switchgrass systems as a function of yield, irrigation requirement, crop N removal, N translocation from aboveground (AG) to belowground (BG) biomass during senescence, and fertilizer 15N recovery (FNR) in the AG and BG biomass (0–300 cm), and soil (0–300 cm). The low‐input system consisted of a single‐harvest (mid‐fall) irrigated until flowering (early summer), while the high‐input system consisted of a two‐harvest system (early summer and mid‐fall) irrigated throughout the growing season. Three N fertilization rates (0, 100, and 200 kg N ha?1 yr?1) were applied as subtreatments in a single application in the spring of each year. A single pulse of 15N enriched fertilizer was applied in the first year of the study to micro‐plots within the 100 kg N ha?1 subplots. Average yields across years under optimal N rates (100 and 200 kg ha?1 yr?1 for low‐ and high‐input systems, respectively) were 20.7 and 24.8 Mg ha?1. However, the low input (372 ha mm) required 47% less irrigation than the high‐input system (705 ha mm) and achieved higher irrigation use efficiency. In addition, the low‐input system had 46% lower crop N removal, 53% higher N stored in BG biomass, and a positive N balance, presumably due to 49% of 15N translocation from AG to BG biomass during senescence. Furthermore, at the end of 3 years, the low‐input system had lower fertilizer 15N removed by harvest (26%) and higher FNR remaining in the system in BG biomass plus soil (31%) than the high‐input system (45% and 21%, respectively). Based on these findings, low‐input systems are more sustainable than high‐input systems in irrigated Mediterranean climates. 相似文献
992.
Osmolytes that are naturally selected to protect organisms against environmental stresses are known to confer stability to proteins via preferential exclusion from protein surfaces. Solvophobicity, surface tension, excluded volume, water structure changes and electrostatic repulsion are all examples of forces proposed to account for preferential exclusion and the ramifications exclusion has on protein properties. What has been lacking is a systematic way of determining which force(s) is(are) responsible for osmolyte effects. Here, we propose the use of two experimental metrics for assessing the abilities of various proposed forces to account for osmolyte-mediated effects on protein properties. Metric 1 requires prediction of the experimentally determined ability of the osmolyte to bring about folding/unfolding resulting from the application of the force in question (i.e. prediction of the m-value of the protein in osmolyte). Metric 2 requires prediction of the experimentally determined ability of the osmolyte to contract or expand the Stokes radius of the denatured state resulting from the application of the force. These metrics are applied to test separate claims that solvophobicity/solvophilicity and surface tension are driving forces for osmolyte-induced effects on protein stability. The results show clearly that solvophobic/solvophilic forces readily account for protein stability and denatured state dimensional effects, while surface tension alone fails to do so. The agreement between experimental and predicted m-values involves both positive and negative m-values for three different proteins, and as many as six different osmolytes, illustrating that the tests are robust and discriminating. The ability of the two metrics to distinguish which forces account for the effects of osmolytes on protein properties and which do not, provides a powerful means of investigating the origins of osmolyte-protein effects. 相似文献
993.
994.
Rogers SA Tripathi P Mohanakumar T Liapis H Chen F Talcott MR Faulkner C Hammerman MR 《Organogenesis》2011,7(3):154-162
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia. 相似文献
995.
Einav Gross Carolyn S Sevier Andrea Vala Chris A Kaiser Deborah Fass 《Nature structural biology》2002,9(1):61-67
Erv2p is an FAD-dependent sulfhydryl oxidase that can promote disulfide bond formation during protein biosynthesis in the yeast endoplasmic reticulum. The structure of Erv2p, determined by X-ray crystallography to 1.5 A resolution, reveals a helix-rich dimer with no global resemblance to other known FAD-binding proteins or thiol oxidoreductases. Two pairs of cysteine residues are required for Erv2p activity. The first (Cys-Gly-Glu-Cys) is adjacent to the isoalloxazine ring of the FAD. The second (Cys-Gly-Cys) is part of a flexible C-terminal segment that can swing into the vicinity of the first cysteine pair in the opposite subunit of the dimer and may shuttle electrons between substrate protein dithiols and the FAD-proximal disulfide. 相似文献
996.
997.
An X. Tran Changjiang Dong Chris Whitfield 《The Journal of biological chemistry》2010,285(43):33529-33539
LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway. 相似文献
998.
Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli. 总被引:1,自引:0,他引:1 下载免费PDF全文
A lactate dehydrogenase (LDH) gene of Clostridium acetobutylicum B643 was cloned on two recombinant plasmids, pPC37 and pPC58, that were selected by complementation of Escherichia coli PRC436 (acd), a fermentation-defective mutant that does not grow anaerobically on glucose. E. coli PRC436(pPC37) and PRC436(pPC58) grew anaerobically and fermented glucose to mostly lactate. When pPC37 and pPC58 were transformed into E. coli FMJ39 (ldh pfl), an LDH-deficient strain, the resulting strains grew anaerobically on glucose and produced lactate. Crude extracts of E. coli FMJ39(pPC37) and FMJ39(pP58) contained high LDH activity only when assayed for pyruvate reduction to lactate, and the LDH activity was activated 15- to 30-fold by the addition of fructose 1,6-diphosphate (FDP). E. coli FMJ39 had no detectable LDH activity, and E. coli LDH from a wild-type strain was not activated by FDP. Maxicell analysis showed that both plasmids pPC37 and pPC58 expressed a protein with an apparent Mr of 38,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Restriction endonuclease mapping of pPC37 and pPC58 and DNA hybridization studies indicated that a 2.1-kb region of these two clones of C. acetobutylicum DNA encodes the FDP-activated LDH. 相似文献
999.
1000.