首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9250篇
  免费   930篇
  国内免费   3篇
  10183篇
  2023年   45篇
  2022年   94篇
  2021年   163篇
  2020年   123篇
  2019年   169篇
  2018年   166篇
  2017年   165篇
  2016年   264篇
  2015年   494篇
  2014年   492篇
  2013年   547篇
  2012年   796篇
  2011年   772篇
  2010年   426篇
  2009年   413篇
  2008年   610篇
  2007年   559篇
  2006年   564篇
  2005年   530篇
  2004年   518篇
  2003年   443篇
  2002年   414篇
  2001年   127篇
  2000年   95篇
  1999年   105篇
  1998年   108篇
  1997年   76篇
  1996年   75篇
  1995年   65篇
  1994年   68篇
  1993年   46篇
  1992年   62篇
  1991年   55篇
  1990年   46篇
  1989年   35篇
  1988年   38篇
  1987年   23篇
  1986年   27篇
  1985年   27篇
  1984年   39篇
  1983年   31篇
  1982年   23篇
  1981年   19篇
  1980年   19篇
  1979年   16篇
  1978年   21篇
  1977年   17篇
  1976年   16篇
  1973年   24篇
  1969年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a genetic disorder with an incidence of ~1:20,000 that manifests in a wide range of renal and liver disease severity in human patients and can lead to perinatal mortality. ARPKD is caused by mutations in PKHD1, which encodes the large membrane protein, Fibrocystin, required for normal branching morphogenesis of the ureteric bud during embryonic renal development. The variation in ARPKD phenotype suggests that in addition to PKHD1 mutations, other genes may play a role, acting as modifiers of disease severity. One such pathway involves non-canonical Wnt/Planar Cell Polarity (PCP) signalling that has been associated with other cystic kidney diseases, but has not been investigated in ARPKD. Analysis of the AtminGpg6 mouse showed kidney, liver and lung abnormalities, suggesting it as a novel mouse tool for the study of ARPKD. Further, modulation of Atmin affected Pkhd1 mRNA levels, altered non-canonical Wnt/PCP signalling and impacted cellular proliferation and adhesion, although Atmin does not bind directly to the C-terminus of Fibrocystin. Differences in ATMIN and VANGL2 expression were observed between normal human paediatric kidneys and age-matched ARPKD kidneys. Significant increases in ATMIN, WNT5A, VANGL2 and SCRIBBLE were seen in human ARPKD versus normal kidneys; no substantial differences were seen in DAAM2 or NPHP2. A striking increase in E-cadherin was also detected in ARPKD kidneys. This work indicates a novel role for non-canonical Wnt/PCP signalling in ARPKD and suggests ATMIN as a modulator of PKHD1.  相似文献   
72.
73.
Immunomodulation is a molecular technique that allows the interference with cellular metabolism or pathogen infectivity by the ectopic expression of genes encoding antibodies or antibody fragments. In recent years, several reports have proven the value of this tool in plant research for modulation of phytohormone activity and for blocking plant-pathogen infection. Efficient application of the plantibody approach requires different levels of investigation. First of all, methods have to be available to clone efficiently the genes coding for antibodies or antibody fragments that bind the target antigen. Secondly, conditions to obtain high accumulation of antigen-binding antibodies and antibody fragments in plants are being investigated and optimized. Thirdly, different strategies are being evaluated to interfere with the function of the target molecule, thus enabling immunomodulation of metabolism or pathogen infectivity. In the near future, optimized antibody gene isolation and expression, especially in reducing subcellular environments, such as the cytosol and nucleus, should turn immunomodulation into a powerful and attractive tool for gene inactivation, complementary to the classical antisense and co-suppression approaches.  相似文献   
74.
75.
A two-component recombinant fusion protein antigen was re-engineered and tested as a medical counter measure against the possible biological threat of aerosolized Yersinia pestis. The active component of the proposed subunit vaccine combines the F1 capsular protein and V virulence antigen of Y. pestis and improves upon the design of an earlier histidine-tagged fusion protein. In the current study, different production strains were screened for suitable expression and a purification process was optimized to isolate an F1-V fusion protein absent extraneous coding sequences. Soluble F1-V protein was isolated to 99% purity by sequential liquid chromatography including capture and refolding of urea-denatured protein via anion exchange, followed by hydrophobic interaction, concentration, and then transfer into buffered saline for direct use after frozen storage. Protein identity and primary structure were verified by mass spectrometry and Edman sequencing, confirming a purified product of 477 amino acids and removal of the N-terminal methionine. Purity, quality, and higher-order structure were compared between lots using RP-HPLC, intrinsic fluorescence, CD spectroscopy, and multi-angle light scattering spectroscopy, all of which indicated a consistent and properly folded product. As formulated with aluminum hydroxide adjuvant and administered in a single subcutaneous dose, this new F1-V protein also protected mice from wild-type and non-encapsulated Y. pestis challenge strains, modeling prophylaxis against pneumonic and bubonic plague. These findings confirm that the fusion protein architecture provides superior protection over the former licensed product, establish a foundation from which to create a robust production process, and set forth assays for the development of F1-V as the active pharmaceutical ingredient of the next plague vaccine.  相似文献   
76.
77.
Nitric oxide (NO) limits formation of neointimal hyperplasia in animal models of arterial injury in large part by inhibiting vascular smooth muscle cell (VSMC) proliferation through cell cycle arrest. The ubiquitin-conjugating enzyme UbcH10 is responsible for ubiquitinating cell cycle proteins for proper exit from mitosis. We hypothesize that NO prevents VSMC proliferation, and hence neointimal hyperplasia, by decreasing levels of UbcH10. Western blotting and immunofluorescent staining showed that NO reduced UbcH10 levels in a concentration-dependent manner in VSMC harvested from the abdominal aortas of Sprague-Dawley rats. Treatment with NO or siRNA to UbcH10 decreased both UbcH10 levels and VSMC proliferation (P<0.001), while increasing UbcH10 levels by plasmid transfection or angiotensin II stimulation increased VSMC proliferation to 150% (P=0.008) and 212% (P=0.002) of control, respectively. Immunofluorescent staining of balloon-injured rat carotid arteries showed a ~4-fold increase in UbcH10 levels, which was profoundly decreased following treatment with NO. Western blotting of carotid artery lysates showed no UbcH10 in uninjured vessels, a substantial increase in the injury alone group, and a significant decrease in the injury+NO group (~3-fold reduction versus injury alone). Importantly, in vitro and in vivo, a marked increase in polyubiquitinated UbcH10 was observed in the NO-treated VSMC and carotid arteries, respectively, indicating that NO may be decreasing unmodified UbcH10 levels by increasing its ubiquitination. Central to our hypothesis, we report that NO decreases UbcH10 levels in VSMC in vitro and following arterial injury in vivo in association with increasing polyubiquitinated-UbcH10 levels. These changes in UbcH10 levels correlate with VSMC proliferation and neointimal hyperplasia, making UbcH10 a promising therapeutic target for inhibiting this proliferative disease.  相似文献   
78.
The growth of gene and protein sequence information is currently so rapid that three-dimensional structural information is lacking for the overwhelming majority of known proteins. In this review, efforts towards rapid and sensitive methods for protein structural characterization are described, complementing existing technologies. Based on chemical cross-linking and offering the analytical speed and sensitivity of mass spectrometry these methodologies are thought to contribute valuable tools towards future high throughput protein structure elucidation.  相似文献   
79.
Rackham O  Brown CM 《The EMBO journal》2004,23(16):3346-3355
Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA-protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells.  相似文献   
80.
Abstract: Dimethylphenylpiperazinium iodide (a nicotinic agonist) evokes noradrenaline release from human neuroblastoma SH-SY5Y cells that have been pretreated with 12- O -tetradecanoylphorbol 13-acetate for 8 min. This effect of dimethylphenylpiperazinium iodide was inhibited by 1 μ M mecamylamine but not by 1 μ M atropine, which suggests that SH-SY5Y cells express nicotinic receptors coupled to the release of noradrenaline. Dimethylphenylpiperazinium iodide-evoked release was enhanced by 5 μ M Bay K 8644 (an L-type calcium agonist) and inhibited by 1 μ M nifedipine. Dimethylphenylpiperazinium iodide depolarised SH-SY5Y cells and enhanced the level of intracellular calcium in cells loaded with fura 2. The effects of dimethylphenylpiperazinium iodide on noradrenaline release, depolarisation, and intracellular calcium levels were all inhibited by 1 μ M desmethylimipramine. The results of this study show that nicotinic receptors in SH-SY5Y cells stimulate noradrenaline release by activation of L-type calcium channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号