首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   28篇
  2020年   2篇
  2019年   4篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   10篇
  2013年   10篇
  2012年   9篇
  2011年   7篇
  2010年   13篇
  2009年   9篇
  2008年   15篇
  2007年   12篇
  2006年   17篇
  2005年   10篇
  2004年   13篇
  2003年   14篇
  2002年   9篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   12篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1977年   4篇
  1976年   2篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1965年   3篇
  1964年   3篇
  1963年   5篇
  1962年   2篇
  1960年   1篇
  1958年   3篇
  1957年   4篇
  1953年   1篇
  1946年   1篇
  1943年   1篇
  1940年   1篇
  1937年   2篇
  1936年   1篇
  1933年   2篇
  1932年   1篇
  1927年   2篇
  1926年   1篇
  1924年   1篇
  1921年   1篇
排序方式: 共有281条查询结果,搜索用时 261 毫秒
141.
Energy and habitat heterogeneity are important correlates of spatial variation in species richness, though few investigations have sought to determine simultaneously their relative influences. Here we use the South African avifauna to examine the extent to which species richness is related to these variables and how these relationships depend on spatial grain. Taking spatial autocorrelation and area effects into account, we find that primary productivity, precipitation, absolute minimum temperature, and, at coarser resolutions, habitat heterogeneity account for most of the variation in species richness. Species richness and productivity are positively related, whereas the relationship between potential evapotranspiration (PET) and richness is unimodal. This is largely because of the constraining effects of low rainfall on productivity in high-PET areas. The increase in the importance of vegetation heterogeneity as an explanatory variable is caused largely by an increase in the range of vegetation heterogeneity included at coarse resolutions and is probably also a result of the positive effects of environmental heterogeneity on species richness. Our findings indicate that species richness is correlated with, and hence likely a function of, several variables, that spatial resolution and extent must be taken into account during investigations of these relationships, and that surrogate measures for productivity should be interpreted cautiously.  相似文献   
142.

Background  

The tolerability and efficacy of single dose albendazole (400 mg), diethylcarbamazine citrate (DEC) (6 mg/kg bodyweight) or co-administration of albendazole (400 mg) + DEC (6 mg/kg bodyweight) was studied in 54 asymptomatic Wuchereria bancrofti microfilaraemic volunteers in a double blind hospital-based clinical study.  相似文献   
143.
144.
Daily changes in microclimate temperature and supercooling point (SCP) of Collembola were measured during summer at Cape Hallett, North Victoria Land, Antarctica. Isotoma klovstadi and Cryptopygus cisantarcticus (Isotomidae) showed bimodal SCP distributions, predominantly in the high group during the day and in the low group during the night. There were no concurrent diurnal changes in water content or haemolymph osmolality. By contrast, Friesea grisea (Neanuridae) had a unimodal distribution of SCPs that was invariant between daytime and nighttime. Isotoma klovstadi collected foraging on moss had uniformly high SCPs, which shifted towards the low group when the animals were starved for 2-8 h. When I. klovstadi was acclimated for five days with lichen or algae, SCPs were higher than if they were supplied with moss, while those that were starved (with free water or 100% relative humidity) displayed a trimodal SCP distribution. A variety of pre-treatments, including cold, heat, desiccation and slow cooling were ineffective at inducing SCP shifts in C. cisantarcticus or I. klovstadi. It is postulated that behavioural avoidance of low temperatures by vertical migration may be key in I. klovstadi's short-term survival of nighttime temperatures. These data suggest that the full range of thermal responses of Antarctic Collembola is yet to be elucidated.  相似文献   
145.
Thermal tolerance, climatic variability and latitude   总被引:19,自引:0,他引:19  
The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size.  相似文献   
146.
Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages are likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage‐level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV‐B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait‐mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business‐as‐usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganized in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait–environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes.  相似文献   
147.
Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the 'Gressitt Line'. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these have been exacerbated by direct and indirect effects of invasive alien species. Interactions between climate change and invasion seem set to become one of the most significant conservation problems in the Antarctic. We conclude that despite the substantial body of work on the terrestrial biodiversity of the Antarctic, investigations of interactions between hierarchical levels remain scarce. Moreover, little of the available information is being integrated into terrestrial conservation planning, which lags far behind in this region by comparison with most others.  相似文献   
148.
149.
The histone demethylase, lysine (K)-specific demethylase 2A (Kdm2a), is highly conserved and expressed ubiquitously. Kdm2a can regulate cell proliferation and osteo/dentinogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs) derived from dental tissue. We used quantitative real-time RT-PCR analysis and immunohistochemistry to detect Kdm2a expression during development of the murine molar at embryonic days E12, E14, E16 and E17 and postnatal days P3 and P14. Immunohistochemistry results showed no positive staining of Kdm2a at E12. At E14, Kdm2a was expressed weakly in the inner enamel epithelium, stellate reticulum cells and dental sac. At E16, Kdm2a was expressed mainly in the inner and outer enamel epithelium, stratum intermedium and dental sac, but weaker staining was found in cervical loop and dental papilla cells adjacent to the basement membrane. At E17, the strongest Kdm2a staining was detected in the ameloblasts and stronger Kdm2a staining also was detected in the stratum intermedium, outer enamel epithelium and dental papilla cells compared to the expression at E16. Postnatally, we found that Kdm2a was localized in secretory and mature ameloblasts and odontoblasts, and dentin was unstained. Real-time RT-PCR showed that Kdm2a mRNA levels in murine germ cells increased from E12 to E14 and from E14 to E16; no significant change occurred at E16, E17 or P3, then the levels decreased at P14 compared to P3. Kdm2a expression may be closely related to cell proliferation, to ameloblast and odontoblast differentiation and to the secretion of extracellular enamel and dentin during murine tooth development.  相似文献   
150.
Local range expansions might either be the response of populations to climate or landscape change, or be caused directly by human intervention. In the latter case the expansion would be considered the first in the steps leading to a biological invasion. In species typically not the subject of human commerce, distinguishing the causes of local range expansions is problematic. Range dynamic theory provides a basis for doing so, and, when used to assess phylogeographical information, can be a powerful conservation biogeographical approach. Here we adopt this approach to resolve the controversial case of the recent range expansion of the painted reed frog (Hyperolius marmoratus) in southern South Africa. Within the last decade, H. marmoratus has spread westward approximately 500 km from its historical range. This local range expansion could either represent human‐mediated jump dispersal, or a response to landscape or climate change. To date, the latter has been assumed, although not universally. Using a phylogeographic approach to investigate these competing hypotheses, a portion of the mitochondrial COI gene was sequenced for individuals from within the historical range (n = 178), and four putatively introduced populations in dams (n = 121). There was substantial geographical population structure within the historical range, and these populations were significantly different from the dam populations (ΦST = 0.817, P < 0.001). The presence of one or a few dissimilar haplotypes in the dams suggests that introductions are from a number of different sources. This, in conjunction with new survey data, supports the hypothesis that recent establishment of these populations is the result of human‐mediated jump dispersal. The impact of this range expansion on ecosystem functioning is unknown, but given the rapid spread of this species and its potential influence on ecosystems, safeguards should be put in place to control further introductions and to restrict the currently invasive populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号