首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   93篇
  2023年   6篇
  2022年   22篇
  2021年   37篇
  2020年   18篇
  2019年   26篇
  2018年   21篇
  2017年   19篇
  2016年   43篇
  2015年   61篇
  2014年   79篇
  2013年   74篇
  2012年   83篇
  2011年   106篇
  2010年   58篇
  2009年   46篇
  2008年   61篇
  2007年   42篇
  2006年   36篇
  2005年   38篇
  2004年   33篇
  2003年   28篇
  2002年   20篇
  2001年   26篇
  2000年   24篇
  1999年   17篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   21篇
  1989年   18篇
  1988年   13篇
  1987年   14篇
  1986年   12篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1979年   10篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1973年   11篇
  1971年   6篇
  1970年   6篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1316条查询结果,搜索用时 343 毫秒
131.
A simple high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous determination of the pharmacologically important quinazoline alkaloids vasicine and vasicinone in Adhatoda vasica. The assay combines the separation and quantification of the analytes on silica gel 60 GF254 HPTLC plates with visualisation under UV and scanning at 270 and 281 nm. Using this technique, the alkaloidal content of different parts of the title plant have been determined.  相似文献   
132.
We report on the synthesis, biological evaluation and structure-activity relationships for a series of 3-benzazepine derivatives as 5-HT(2C) receptor agonists. The compounds were evaluated in functional assays measuring [3H] phosphoinositol turnover in HEK-293 cells transiently transfected with h5-HT(2C), h5-HT(2A) or h5-HT(2B) receptors. Several compounds are shown to be potent and selective 5-HT(2C) receptor agonists, which decrease food intake in a rat feeding model.  相似文献   
133.
RNA interference (RNAi) is an ancient and evolutionarily conserved process. In some eukaryotes, RNAi silences parasitic genetic elements. In plants, RNAi serves as an immune system against RNA viruses and transgenes and in worms, RNAi silences transposons. In mammals, RNAi has yet unknown functions. However, emerging roles for short RNAs and the factors that interact with them in other eukaryotes include chromatin modification, DNA deletion and DNA methylation, which may provide clues to the roles for short RNA function in mammals. For example, antigen receptor expression in lymphocytes is a highly regulated process and although much is known about chromatin modification and DNA deletion in the immune system, several molecular details of chromatin regulation remain elusive. This review compares emerging roles for short RNA function to processes required for antigen receptor expression in mammalian lymphocytes and predicts that short RNAs direct events required for successful lymphocyte-restricted gene expression.  相似文献   
134.
The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy.  相似文献   
135.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   
136.
S-box (SAM-I) riboswitches are a widespread class of riboswitches involved in the regulation of sulfur metabolism in Gram-positive bacteria. We report here the 3.0-Å crystal structure of the aptamer domain of the Bacillus subtilis yitJ S-box (SAM-I) riboswitch bound to S-adenosyl-l-methionine (SAM). The RNA folds into two sets of helical stacks spatially arranged by tertiary interactions including a K-turn and a pseudoknot at a four-way junction. The tertiary structure is further stabilized by metal coordination, extensive ribose zipper interactions, and SAM-mediated tertiary interactions. Despite structural differences in the peripheral regions, the SAM-binding core of the B. subtilis yitJ riboswitch is virtually superimposable with the previously determined Thermoanaerobacter tengcongensis yitJ riboswitch structure, suggesting that a highly conserved ligand-recognition mechanism is utilized by all S-box riboswitches. SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing analysis further revealed that the alternative base-pairing element in the expression platform controls the conformational switching process. In the absence of SAM, the apo yitJ aptamer domain folds predominantly into a pre-binding conformation that resembles, but is not identical with, the SAM-bound state. We propose that SAM enters the ligand-binding site through the “J1/2-J3/4” gate and “locks” down the SAM-bound conformation through an induced-fit mechanism. Temperature-dependent SHAPE revealed that the tertiary interaction-stabilized SAM-binding core is extremely stable, likely due to the cooperative RNA folding behavior. Mutational studies revealed that certain modifications in the SAM-binding region result in loss of SAM binding and constitutive termination, which suggests that these mutations lock the RNA into a form that resembles the SAM-bound form in the absence of SAM.  相似文献   
137.
Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH3CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect (Dkapp ∼ 10), which was highly expressed in a variety of competitive and non-competitive experiments. The Dkapp for DEN was ∼3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO2H and CH3CO2H, respectively. In neither case was a lag observed, which was unexpected considering the kcat and Km parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).  相似文献   
138.
139.
In presence of the glycosylation inhibitors, 2-deoxy-d-glucose (1 mg/ml), tunicamycin (30 μg/ml), 1-deoxynojirimycin (30 μg/ml) and d-glucono-δ-lactone (1 mg/ml), total cellobiase activity, in the extracellular, intracellular and cell bound fractions, of the fungus Termitomyces clypeatus grown in 20 ml cellobiose medium (1%, w/v) increased by 50-, 1.8-, 2.4-, 1.3-fold, respectively, with respect to control medium (16.3 U). The inhibitors also stimulated secretion of 95% of the total protein in culture medium, except d-glucono-δ-lactone which released 60% of the total protein. 2-Deoxy-d-glucose (1 mg/ml) led to production of extracellular cellobiase up to 40 U/ml, whereas in absence of the inhibitors only 0.59 U/ml enzyme was detected.  相似文献   
140.
Analysis of chromatin-immunoprecipitation followed by sequencing (ChIP-seq) usually disregards sequence reads that do not map within binding positions (peaks). Using an unbiased approach, we analysed all reads, both that mapped and ones that were not included as part of peaks. ChIP-seq experiments were performed in human lung adenocarcinoma and fibrosarcoma cells for the metastasis suppressor non-metastatic 2 (NME2). Surprisingly, we identified sequence reads that uniquely represented human telomere ends in both cases. In vivo presence of NME2 at telomere ends was validated using independent methods and as further evidence we found intranuclear association of NME2 and the telomere repeat binding factor 2. Most remarkably, results demonstrate that NME2 associates with telomerase and reduces telomerase activity in vitro and in vivo, and sustained NME2 expression resulted in reduced telomere length in aggressive human cancer cells. Anti-metastatic function of NME2 has been demonstrated in human cancers, however, mechanisms are poorly understood. Together, findings reported here suggest a novel role for NME2 as a telomere binding protein that can alter telomerase function and telomere length. This presents an opportunity to investigate telomere-related interactions in metastasis suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号