首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1843篇
  免费   230篇
  国内免费   9篇
  2082篇
  2022年   20篇
  2021年   27篇
  2020年   11篇
  2019年   15篇
  2018年   25篇
  2017年   18篇
  2016年   39篇
  2015年   81篇
  2014年   77篇
  2013年   80篇
  2012年   114篇
  2011年   113篇
  2010年   67篇
  2009年   64篇
  2008年   91篇
  2007年   94篇
  2006年   91篇
  2005年   79篇
  2004年   79篇
  2003年   59篇
  2002年   56篇
  2001年   67篇
  2000年   56篇
  1999年   79篇
  1998年   31篇
  1997年   27篇
  1996年   22篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   50篇
  1991年   37篇
  1990年   39篇
  1989年   28篇
  1988年   36篇
  1987年   28篇
  1986年   27篇
  1985年   22篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1979年   12篇
  1977年   12篇
  1976年   9篇
  1975年   10篇
  1974年   11篇
  1973年   11篇
  1972年   10篇
排序方式: 共有2082条查询结果,搜索用时 0 毫秒
91.
A single specimen of giant leptocephalus Thalassenchelys foliaceus Castle & Raju 1975 was caught in subtropical waters of the western North Pacific Ocean. Mitochondrial coI gene sequence divergence between T. foliaceus and Congriscus maldivensis (Norman 1939) was 0·64 ± 0·27% (mean ± s.e. ), and the myomere and vertebral counts of these species were similar, indicating T. foliaceus is a junior synonym of C. maldivensis.  相似文献   
92.
To identify lobster phyllosoma larvae of the genus Panulirus occurring in waters adjacent to Japan, genetic variation within and between 10 Indo-Pacific lobster species was investigated using restriction fragment length polymorphism (RFLP) analysis for the 1300-base pair mitochondrial cytochrome oxidase I (COI) gene. RFLP analysis using two endonucleases (AluI and TaqI) enabled discrimination of all species, including the P. longipes complex. The diagnostic DNA markers, supplemented with nucleotide sequence analysis, were applied to 44 mid- to late-stage phyllosoma larvae (7.4 to 27.7 mm in body length) collected in the northwestern Pacific. These samples were unexpectedly variable in species composition, comprising P. japonicus (n = 16), P. longipes bispinosus (21), P. longipes longipes (1), P.aka” (1), and P. penicillatus (5). Comparison of larval size at similar stages revealed that P. l. bispinosus larvae were significantly larger than P. japonicus.  相似文献   
93.
The growth-arrest-specific 2 (gas2) gene was initially identified on account of its high level of expression in murine fibroblasts under growth arrest conditions, followed by downregulation upon reentry into the cell cycle (Schneider et al., Cell 54, 787-793, 1988). In this study, the expression patterns of the gas2 gene and the Gas2 peptide were established in the developing limbs of 11.5- to 14. 5-day mouse embryos. It was found that gas2 was expressed in the interdigital tissues, the chondrogenic regions, and the myogenic regions. Low-density limb culture and Brdu incorporation assays revealed that gas2 might play an important role in regulating chondrocyte proliferation and differentiation. Moreover, it might play a similar role during limb myogenesis. In addition to chondrogenesis and myogeneis, gas2 is involved in the execution of the apoptotic program in hindlimb interdigital tissues-by acting as a death substrate for caspase enzymes. TUNEL analysis demonstrated that the interdigital tissues underwent apoptosis between 13.5 and 15.5 days. Exactly at these time points, the C-terminal domain of the Gas2 peptide was cleaved as revealed by Western blot analysis. Moreover, pro-caspase-3 (an enzyme that can process Gas2) was cleaved into its active form in the interdigital tissues. The addition of zVAD-fmk, a caspase enzyme inhibitor, to 12.5-day-old hindlimbs maintained in organ culture revealed that the treatment inhibited interdigital cell death. This inhibition correlated with the absence of the Gas2 peptide and pro-caspase-3 cleavage. The data suggest that Gas2 might be involved in the execution of the apoptotic process.  相似文献   
94.
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, G?6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.  相似文献   
95.
In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (k(cat); 3.8 versus 5.7 s(-1) at 25 degrees C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)(-1) in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster k(cat).  相似文献   
96.
97.
98.
An analysis is made of the van der Waals dispersion attractive forces and electrostatic repulsive forces between the grana thylakoid membranes of chloroplasts. These forces are determined for negatively charged surfaces with a pKa value of 4.7 for a bulk pH of 7.0 with a range of mono- and divalent cation concentrations and intermembrane spacing in the range 10 to 80 Å. For equilibrium under dark conditions, it is concluded that either there is extensive electrostatic binding of divalent cations (Mg2+) to the negatively charged membrane groups (phospholipid, sulfolipid, and protein carboxyl), or a redistribution of these groups between stacked and unstacked regions must be invoked.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号