首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   27篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   27篇
  2020年   12篇
  2019年   14篇
  2018年   32篇
  2017年   14篇
  2016年   31篇
  2015年   17篇
  2014年   37篇
  2013年   74篇
  2012年   73篇
  2011年   55篇
  2010年   43篇
  2009年   30篇
  2008年   26篇
  2007年   29篇
  2006年   25篇
  2005年   32篇
  2004年   28篇
  2003年   15篇
  2002年   26篇
  2001年   12篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1972年   2篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有778条查询结果,搜索用时 46 毫秒
41.
Most species use daily light in one way or the other in regulation of their short and/or long term activities. Light is perceived by pigment(s) present in the retinal (RP) and/or extra-retinal photoreceptors (ERPs). ERPs may be located at various sites in the body but in non-mammalian vertebrates they are found predominantly in the pineal body and hypothalamic region of the brain, Light radiations directly penetrate brain tissues to reach and stimulate the hypothalamic (deep-brain) photoreceptors. How does light information finally reach to the clock is not fully understood in many vertebrate groups? In mammals, however, the light information from the retina to the clock (the hypothalamic suprachiasmatic nuclei, SCN) is relayed through the retino-hypothalamic tract (RHT) which originates from the retinal ganglion cells, and through the geniculo-hypothalamic tract (GHT) which originates from the photically responsive cells of a portion of the lateral geniculate nucleus (LGN), called the intergeniculate leaflet (IGL). A response to light (the photoperiodic response) is the result of the interpretation of light information by the photoperiodic system. Apart from the duration, the animals use the gradual shifts in the intensity and wavelength of daily light to regulate their photoperiodic clock system. The wavelengths to which photoreceptors are maximally sensitive or the wavelengths which have greater access to the photoreceptors can induce a maximal response. There can also be differential effects of wavelength and intensity of light on circadian process(es) involved in the entrainment and induction of the photoperiodic clock. This may have some adaptive implications. Entrainment to daily light-dark (LD) cycle may be achieved at dawn or dusk, depending whether the animal is day- or night-active, when there is relatively low intensity of light. By contrast, photoperiodic induction in many species occurs during long days of spring and summer when plenty of daylight at higher intensity is available later in the day.  相似文献   
42.
43.
Reliable analysis using an immunosensor strongly depends on the specificity, activity, and sensitivity of the antibody. Immobilization of antibody on the solid matrix enables its repeated use, for which it is required to dissociate the antigens and antigen-enzyme conjugate from the immobilized antibody matrix after each use and while doing so, a maximum retention of activity and specificity are crucial requirements. In the present investigation, on the development of an immunosensor for the organophosphorus pesticide ethyl parathion (EP) using EP antibodies, different dissociating agents such as organic solvents, detergents and acidic buffers, that is, dimethyl sulphoxide (DMSO), Tween-20, cetyl trimethylammonium bromide (CTAB), methanol, chloroform, guanidium chloride (GdmCl), glycine-HCl (Gly-HCl) buffer in the pH range of 1.5-3.0, pierce buffer and combination of DMSO and methanol in phosphate buffer and Gly-HCl buffer and salts like NaCl and MgCl2 were used. Generally about 50-60% dissociation was obtained with some degree of denaturation of the antibody immobilized on the sepharose matrix. However, 1% DMSO in combination with 0.2 M Gly-HCl buffer at a pH of 2.3 showed 97% dissociation and the immobilized antibody retained sufficient activity to carry out 14 reproducible assays for EP.  相似文献   
44.
Reappraisal of the regulation of lactococcal L-lactate dehydrogenase   总被引:2,自引:0,他引:2  
Lactococcal lactate dehydrogenases (LDHs) are coregulated at the substrate level by at least two mechanisms: the fructose-1,6-biphosphate/phosphate ratio and the NADH/NAD ratio. Among the Lactococcus lactis species, there are strains that are predominantly regulated by the first mechanism (e.g., strain 65.1) or by the second mechanism (e.g., strain NCDO 2118). A more complete model of the kinetics of the regulation of lactococcal LDH is discussed.  相似文献   
45.
The basal cut end of coppice shoot cuttings of Pongamia pinnata was treated for 24 h with 0 (water treated control) or 5.0 mmol/L of KMnO4, KCI, and KH2PO4 or 2.5 mmol/L of K2HPO4 and K2SO4. Inorganic salts of P, S, Cl and Mn significantly influenced IAA ionization and adventitious rhizogenesis. P and S salts had lower IAA ionization potential, but more pronounced effect on adventitious rhizogenesis than Cl and Mn salts. The linear regression analysis also established negative correlations between salt induced IAA ionization with various characteristics of adventitious rhizogenesis such as sprouting (r = -0.83, p < 0.05), rooting (r = -0.82, p < 0.05), root number (r = -0.95, p < 0.01), and root length (r = -0.80, p < 0.1). The implication of IAA ionization in adventitious rhizogenesis has been discussed and the possible role of inorganic salts therein suggested.  相似文献   
46.
Little is known about how hormones interact in the photoperiodic induction of seasonal responses in birds. In this study, two experiments determined if the treatment with melatonin altered inhibitory effects of prolactin on photoperiodic induction of seasonal responses in the Palearctic-Indian migratory male redheaded bunting Emberiza bruniceps. Each experiment employed three groups (N = 6–7 each) of photosensitive birds that were held under 8 hours light: 16 hours darkness (8L:16D) since early March. In the experiment 1, beginning in mid June 2001, birds were exposed to natural day lengths (NDL) at 27 degree North (day length = ca.13.8 h, sunrise to sunset) for 23 days. In the experiment 2, beginning in early April 2002, birds were exposed to 14L:10D for 22 days. Beginning on day 4 of NDL or day 1 of 14L:10D, they received 10 (experiment 1) or 13 (experiment 2) daily injections of both melatonin and prolactin (group 1) or prolactin alone (group 2) at a dose of 20 microgram per bird per day in 200 microliter of vehicle. Controls (group 3) received similar volume of vehicle. Thereafter, birds were left uninjected for the next 10 (experiment 1) or 9 days (experiment 2). All injections except those of melatonin were made at the zeitgeber time 10 (ZT 0 = time of sunrise, experiment 1; time of lights on, experiment 2); melatonin was injected at ZT 9.5 and thus 0.5 h before prolactin. Observations were recorded on changes in body mass, testicular growth and feather regeneration.  相似文献   
47.
Heteronuclear NMR methods have been used to probe the conformation of four complexes of Escherichia coli dihydrofolate reductase (DHFR) in solution. (1)H(N), (15)N, and (13)C(alpha) resonance assignments have been made for the ternary complex with folate and oxidized NADP(+) cofactor and the ternary complex with folate and a reduced cofactor analog, 5,6-dihydroNADPH. The backbone chemical shifts have been compared with those of the binary complex of DHFR with the substrate analog folate and the binary complex with NADPH (the holoenzyme). Analysis of (1)H(N) and (15)N chemical shifts has led to the identification of marker resonances that report on the active site conformation of the enzyme. Other backbone amide resonances report on the presence of ligands in the pterin binding pocket and in the adenosine and nicotinamide-ribose binding sites of the NADPH cofactor. The chemical shift data indicate that the enzyme populates two dominant structural states in solution, with the active site loops in either the closed or occluded conformations defined by X-ray crystallography; there is no evidence that the open conformation observed in some X-ray structures of E. coli DHFR are populated in solution.  相似文献   
48.
The production of an intermediate temperature-stable (ITS) α-amylase from Aspergillus oryzae was studied by using a central composite design with three independent variables, viz., starch, yeast extract, and K2HPO4. The model equation provided a suitable model for the response surface for α-amylase production, and, from the optimal concentrations of the medium components, a model was predicted, which was then used for enzyme production in a 150-L bioreactor. In the bioreactor studies, the enzyme yields (161 U/ml) were similar to that of the shake flask (133 U/ml); however, the time required for maximum α-amylase production in the bioreactor was reduced to 48 h compared with 120 h in shake flask cultures. An increased level of phosphate in the medium and low inoculum size were necessary to control the excessive foaming in the bioreactor; however, control of the pO2 level and agitation was not mandatory for enzyme production. The peak enzyme production coincided with the increase in pH of the fermentation broth and was maximal when the pH of the system was above 7.5. Thus, in the present study, pH acted as an indicator of the initiation or end of the enzyme synthesis or of the fermentation cycle. Received: 20 November 2001 / Accepted 31 December 2001  相似文献   
49.
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of serotonin, norepinephrine, dopamine, and phenylethylamine. It is an outer membrane mitochondrial enzyme existing in two isoforms, A and B. We have recently generated 14 site-directed mutants of human MAO A and B, and we found that four key amino acids, Lys-305, Trp-397, Tyr-407, and Tyr-444, in MAO A and their corresponding amino acids in MAO B, Lys-296, Trp-388, Tyr-398, and Tyr-435, play important roles in MAO catalytic activity. Based on the polyamine oxidase three-dimensional crystal structure, it is suggested that Lys-305, Trp-397, and Tyr-407 in MAO A and Lys-296, Trp-388, and Tyr-398 in MAO B may be involved in the non-covalent binding to FAD. Tyr-407 and Tyr-444 in MAO A (Tyr-398 and Tyr-435 in MAO B) may form an aromatic sandwich that stabilizes the substrate binding. Asp-132 in MAO A (Asp-123 in MAO B) located at the entrance of the U-shaped substrate-binding site has no effect on MAO A nor MAO B catalytic activity. The similar impact of analogous mutants in MAO A and MAO B suggests that these amino acids have the same function in both isoenzymes. Three-dimensional modeling of MAO A and B using polyamine oxidase as template suggests that the overall tertiary structure and the active sites of MAO A and B may be similar.  相似文献   
50.
We developed a novel efficient scheme, DEFOG (for "deciphering families of genes"), for determining sequences of numerous genes from a family of interest. The scheme provides a powerful means to obtain a gene family composition in species for which high-throughput genomic sequencing data are not available. DEFOG uses two key procedures. The first is a novel algorithm for designing highly degenerate primers based on a set of known genes from the family of interest. These primers are used in PCR reactions to amplify the members of the gene family. The second combines oligofingerprinting of the cloned PCR products with clustering of the clones based on their fingerprints. By selecting members from each cluster, a low-redundancy clone subset is chosen for sequencing. We applied the scheme to the human olfactory receptor (OR) genes. OR genes constitute the largest gene superfamily in the human genome, as well as in the genomes of other vertebrate species. DEFOG almost tripled the size of the initial repertoire of human ORs in a single experiment, and only 7% of the PCR clones had to be sequenced. Extremely high degeneracies, reaching over a billion combinations of distinct PCR primer pairs, proved to be very effective and yielded only 0.4% nonspecific products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号