首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   13篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   11篇
  2014年   7篇
  2013年   14篇
  2012年   23篇
  2011年   34篇
  2010年   15篇
  2009年   9篇
  2008年   16篇
  2007年   27篇
  2006年   30篇
  2005年   20篇
  2004年   28篇
  2003年   27篇
  2002年   20篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   13篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有365条查询结果,搜索用时 832 毫秒
101.
The hydrolytic degradation of biaxially oriented and de-oriented (melt-crystallized) poly(l-lactic acid) (PLLA) films was investigated in Tris-HCl-buffered solution (pH 8.6) with proteinase K, alkaline solution, and phosphate-buffered solution (pH 7.4) by the use of gravimetry, gel permeation chromatography, differential scanning calorimetry, and scanning electron microscopy. Biaxial orientation disturbed the proteinase K-catalyzed enzymatic degradation of PLLA films and the effects of biaxial orientation overcame those of crystallinity. The former may be due to the fact the enzyme cannot attach to the extended (strained) chains in the amorphous regions of the biaxially oriented PLLA film or cannot catalyze the cleavage of the strained chains. Another probable cause is that the enzyme can act only at the film surface of the biaxially oriented PLLA film, in marked contrast with the case of the de-oriented PLLA films where enzymatic degradation can proceed beneath the spherulitic crystalline residues. The effects of biaxial orientation on the alkaline and autocatalytic degradation of the PLLA films were insignificant for the periods studied here. The crystallinity rather than the biaxial orientation seems to determine the alkaline and autocatalytic degradation rates of the PLLA films. The accumulation of crystalline residues formed as a result of selective cleavage and removal of the amorphous chains was observed for the de-oriented PLLA films, but not for the biaxially oriented PLLA film, when degraded in the presence of proteinase K. This means the facile release of formed crystalline residues from the surface of the biaxially oriented PLLA film during enzymatic degradation, due to the fact that the crystalline regions of the biaxially oriented PLLA film were oriented with their c axis parallel to the film surface.  相似文献   
102.
Chlamydophila felis (Chlamydia psittaci feline pneumonitis agent) is a worldwide spread pathogen for pneumonia and conjunctivitis in cats. Herein, we determined the entire genomic DNA sequence of the Japanese C. felis strain Fe/C-56 to understand the mechanism of diseases caused by this pathogen. The C. felis genome is composed of a circular 1,166,239 bp chromosome encoding 1005 protein-coding genes and a 7552 bp circular plasmid. Comparison of C. felis gene contents with other Chlamydia species shows that 795 genes are common in the family Chlamydiaceae species and 47 genes are specific to C. felis. Phylogenetic analysis of the common genes reveals that most of the orthologue sets exhibit a similar divergent pattern but 14 C. felis genes accumulate more mutations, implicating that these genes may be involved in the evolutional adaptation to the C. felis-specific niche. Gene distribution and orthologue analyses reveal that two distinctive regions, i.e. the plasticity zone and frequently gene-translocated regions (FGRs), may play important but different roles for chlamydial genome evolution. The genomic DNA sequence of C. felis provides information for comprehension of diseases and elucidation of the chlamydial evolution.  相似文献   
103.
DsbB is an Escherichia coli plasma membrane protein that reoxidizes the Cys30-Pro-His-Cys33 active site of DsbA, the primary dithiol oxidant in the periplasm. Here we describe a novel activity of DsbB to induce an electronic transition of the bound ubiquinone molecule. This transition was characterized by a striking emergence of an absorbance peak at 500 nm giving rise to a visible pink color. The ubiquinone red-shift was observed stably for the DsbA(C33S)-DsbB complex as well as transiently by stopped flow rapid scanning spectroscopy during the reaction between wild-type DsbA and DsbB. Mutation and reconstitution experiments established that the unpaired Cys at position 44 of DsbB is primarily responsible for the chromogenic transition of ubiquinone, and this property correlates with the functional arrangement of amino acid residues in the neighborhood of Cys44. We propose that the Cys44-induced anomaly in ubiquinone represents its activated state, which drives the DsbB-mediated electron transfer.  相似文献   
104.
Mitochondrial sterol 27-hydroxylase (EC 1.14.13.15) is an important enzyme, not only in the formation of bile acids from cholesterol intermediates in the liver but also in the removal of cholesterol by side chain hydroxylation in extrahepatic tissues. The enzyme has been assayed by complicated methods using radiolabeled substrates or deuterium-labeled tracers. These methods may be inaccurate for measuring enzyme activity, because the amount of electron-transferring proteins may be insufficient for maximal velocity. To solve this problem, after solubilization of the enzyme from rat liver mitochondria with n-octyl-beta-d-glucopyranoside (OGP), we measured the enzyme activity by incubating the solubilized enzyme with saturated amounts of electron-transferring proteins. In our assay system, using 7alpha-hydroxy-4-cholesten-3-one (HCO) as a substrate, we could easily measure the product, 7alpha,27-dihydroxy-4-cholesten-3-one, with HPLC monitoring absorbance at 240 nm. The product formation was proportionate to the time up to 5 min and the protein concentration up to 0.5 mg of protein/ml. The maximal velocity of the enzyme was 1.1 nmol/min/mg of protein, which was 4- to 16-fold higher than previously reported values. A simple and accurate assay method for sterol 27-hydroxylase in rat liver mitochondria is herein described.  相似文献   
105.
Homocrystallized and amorphous enantiomeric blend films were prepared from the melt of high molecular weight poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) (1:1) by crystallization and quenching, respectively. A phosphate-buffered solution was used to investigate effects of homocrystallinity via in vitro hydrolysis as well as crystallization process during the hydrolysis, which was performed for a period of 24 months at 37 degrees C and pH 7.4. Results derived from gravimetry, gel permeation chromatography, and tensile testing showed that hydrolyzability was higher for the homocrystallized film than for the amorphous film. Thus, probable mechanisms are proposed for the enhanced hydrolysis of the homocrystallized blend film compared with that of the amorphous blend film. The hydrolysis rate constant (k) values of the homocrystallized and amorphous films estimated from the changes in number-average molecular weight (M(n)) were 5.00 x 10(-3) and 3.32 x 10(-3) day(-1), respectively. Moreover, hydrolyzability of equimolar enantiomeric poly(lactic acid) blends can be altered in the k range of 0.73 x 10(-3) and 5.00 x 10(-3) day(-1) by varying their crystalline species, crystallinity, or molecular weights.  相似文献   
106.
Chondrodysplasia of gene knockout mice for aggrecan and link protein   总被引:2,自引:0,他引:2  
The proteoglycan aggregate of the cartilage is composed of aggrecan, link protein, and hyaluronan and forms a unique gel-like moiety that provides resistance to compression in joints and a foundational cartilage structure critical for growth plate formation. Aggrecan, a large chondroitin sulfate proteoglycan, is one of the major structural macromolecules in cartilage and binds both hyaluronan and link protein through its N-terminal domain G1. Link protein, a small glycoprotein, is homologous to the G1 domain of aggrecan. Mouse cartilage matrix deficiency (cmd) is caused by a functional null mutation of the aggrecan gene and is characterized by perinatal lethal dwarfism and craniofacial abnormalities. Link protein knockout mice show chondrodysplasia similar to but milder than cmd mice, suggesting a supporting role of link protein for the aggregate structure. Analysis of these mice revealed that the proteoglycan aggregate plays an important role in cartilage development and maintenance of cartilage tissue and may provide a clue to the identification of human genetic disorders caused by mutations in these genes. Published in 2003.  相似文献   
107.
Oceanobacillus iheyensis HTE831 is an alkaliphilic and extremely halotolerant Bacillus-related species isolated from deep-sea sediment. We present here the complete genome sequence of HTE831 along with analyses of genes required for adaptation to highly alkaline and saline environments. The genome consists of 3.6 Mb, encoding many proteins potentially associated with roles in regulation of intracellular osmotic pressure and pH homeostasis. The candidate genes involved in alkaliphily were determined based on comparative analysis with three Bacillus species and two other Gram-positive species. Comparison with the genomes of other major Gram-positive bacterial species suggests that the backbone of the genus Bacillus is composed of approximately 350 genes. This second genome sequence of an alkaliphilic Bacillus-related species will be useful in understanding life in highly alkaline environments and microbial diversity within the ubiquitous bacilli.  相似文献   
108.
6B6 is a monoclonal antibody raised against a purified small dermatan sulfate proteoglycan from human ovarian fibroma capsule, has Although it been widely used as an anti-decorin monoclonal antibody, its epitope has not yet been characterized at the molecular level. Here, we show that 6B6 is specific to decorin. The antibody recognized human, mouse, and bovine decorin core protein, but not biglycan. Using recombinant decorin domains, we determined that the epitope lies within the region of amino acid residues 50-65, termed the cysteine cluster region. Cross-reactivity among species further narrowed it down to a primary sequence of residues 57-65. We also established the conditions for immunostaining. 6B6 stained both frozen and fixed sections. Whereas the glycosaminoglycan chain of decorin inhibited access of the antibody in immunoblotting, pretreatment of tissue sections with chondrotinase ABC did not affect the intensity of staining, suggesting that the glycosaminoglycan chain is integrated and the Cys cluster region oriented outside of the collagen fibrils in the tissue. When 6B6 was applied to enzyme-linked immunosorbent assay, a concentration as low as 0.5 microg/ml of decorin was detectable by either direct or sandwich ELISA. 6B6 is thus a sensitive and reliable antibody to study functions of decorin from various aspects.  相似文献   
109.
Recent studies using mice with genetically engineered gap junction protein connexin (Cx) genes have provided evidence that reduced gap-junctional coupling in ventricular cardiomyocytes predisposes to ventricular arrhythmia. However, the pathological processes of arrhythmogenesis due to abnormalities in gap junctions are poorly understood. We have postulated a hypothesis that dysfunction of gap junctions at the single-cell level may affect synchronization of calcium transients among cardiomyocytes. To examine this hypothesis, we developed a novel system in which gap-junctional intercellular communication in primary neonatal rat cardiomyocytes was inhibited by a mutated (Delta130-137) Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP), and calcium transients were imaged in real time while the mutated Cx43-EGFP-expressing cardiomyocytes were identified. The mutated Cx43-EGFP inhibited dye coupling not only in the liver epithelial cell line IAR 20 but also in primary neonatal rat cardiomyocytes in a dominant-negative manner, whereas wild-type Cx43-EGFP made functional gap junctions in otherwise communication-deficient HeLa cells. The mutated Cx43-EGFP induced desynchronization of calcium transients among cardiomyocytes with significantly higher frequency than wild-type Cx43-EGFP. These results suggest that dysfunction of gap-junctional intercellular communication at the single-cell level could hamper synchronous beating among cardiomyocytes as a result of desynchronization of calcium transients.  相似文献   
110.
Abstract: Serotonin 5-HT2 receptor-mediated intracellular Ca2+ mobilization was investigated in rat glioma C6BU-1 cells. The receptors became desensitized after previous exposure to 5-HT in a time-and concentration-dependent manner. The desensitization of 5-HT2 receptor-mediated intracellular signaling appeared to be homologous because previous exposure to 5-HT did not alter the response to other transmitters such as thrombin or isoproterenol and because previous exposure to thrombin or isoproterenol did not diminish the response to 5-HT. The desensitization induced by pretreatment with 5-HT was potently prevented by the naphthalenesulfonamide derivative W-7, a calmodulin antagonist, when it was cosupplied with 5-HT. Furthermore, the preventive effect of W-7 was greater than that of W-5, a weak analogue of W-7, and than that of H-7, a nonselective inhibitor of protein kinases. These results suggest that 5-HT2 receptor-mediated Ca2+ mobilization can be desensitized homologously after prolonged exposure to 5-HT in a calmodulin-dependent manner in rat glioma C6BU-1 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号