首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2770篇
  免费   236篇
  国内免费   213篇
  3219篇
  2024年   5篇
  2023年   29篇
  2022年   67篇
  2021年   112篇
  2020年   75篇
  2019年   93篇
  2018年   91篇
  2017年   74篇
  2016年   102篇
  2015年   176篇
  2014年   183篇
  2013年   220篇
  2012年   266篇
  2011年   230篇
  2010年   148篇
  2009年   148篇
  2008年   177篇
  2007年   148篇
  2006年   113篇
  2005年   102篇
  2004年   94篇
  2003年   68篇
  2002年   82篇
  2001年   53篇
  2000年   39篇
  1999年   45篇
  1998年   26篇
  1997年   16篇
  1996年   19篇
  1995年   20篇
  1994年   22篇
  1993年   16篇
  1992年   21篇
  1991年   20篇
  1990年   15篇
  1989年   24篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1977年   4篇
  1976年   5篇
  1974年   6篇
  1973年   3篇
  1966年   2篇
排序方式: 共有3219条查询结果,搜索用时 15 毫秒
51.

False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid–structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection–diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young’s modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.

  相似文献   
52.
53.
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified ‘β-clasp’ structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.  相似文献   
54.
Tumor metastasis is a hallmark of cancer. The communication between cancer-derived exosomes and stroma plays an irreplaceable role in facilitating pre-metastatic niche formation and cancer metastasis. However, the mechanisms underlying exosome-mediated pre-metastatic niche formation during colorectal cancer (CRC) liver metastasis remain incompletely understood. Here we identified HSPC111 was the leading upregulated gene in hepatic stellate cells (HSCs) incubated with CRC cell-derived exosomes. In xenograft mouse model, CRC cell-derived exosomal HSPC111 facilitated pre-metastatic niche formation and CRC liver metastases (CRLM). Consistently, CRC patients with liver metastasis had higher level of HSPC111 in serum exosomes, primary tumors and cancer-associated fibroblasts (CAFs) in liver metastasis than those without. Mechanistically, HSPC111 altered lipid metabolism of CAFs by phosphorylating ATP-citrate lyase (ACLY), which upregulated the level of acetyl-CoA. The accumulation of acetyl-CoA further promoted CXCL5 expression and secretion by increasing H3K27 acetylation in CAFs. Moreover, CXCL5-CXCR2 axis reinforced exosomal HSPC111 excretion from CRC cells and promoted liver metastasis. These results uncovered that CRC cell-derived exosomal HSPC111 promotes pre-metastatic niche formation and CRLM via reprogramming lipid metabolism in CAFs, and implicate HSPC111 may be a potential therapeutic target for preventing CRLM.Subject terms: Cancer metabolism, Metastasis, Epithelial-mesenchymal transition  相似文献   
55.
Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.  相似文献   
56.
In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic “leaf” composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow) of the fluid is only 2∼3 s. This micropump/valve can be used as a “plug and play” fluid-driven unit. It has the potential to be used in many application fields.  相似文献   
57.
氨酰基脯氨酸二肽酶 (脯氨肽酶 )为广泛分布于生物界的细胞内二肽水解酶 .它特异性地水解以脯氨酸或羟脯氨酸为羧基端的二肽 (X Pro) ,而且只对反式肽键有催化活性 .此酶与脯氨酸代谢、胶原蛋白合成及细胞生长有密切关系 .文献报道 ,从Alteromonas细菌中提取的脯氨肽酶有水解梭曼的活性 ,其有机磷酸酐水解酶也有脯氨肽酶活性 .用重组基因表达的人肝脯氨肽酶也同时具有脯氨肽酶活性和水解梭曼的活性 .研究脯氨肽酶活性中心的结构具有重要理论意义和潜在实用价值 .但目前尚无人脯氨肽酶晶体结构的报道 .本文采用蛋白质结构模式识别 (threading)方法对脯氨肽酶的高级结构进行模拟 ,以大肠杆菌甲硫氨酸氨肽酶 (1MAT)为模板 ,模建了人脯氨肽酶C端结构域的空间结构 .通过对模建结构的 3D评估及电荷分布分析 ,对人脯氨肽酶活力中心结构进行了预测 .模建的人脯氨肽酶活性中心位于C端结构域 ,为 6条β折叠围成的一个疏水性口袋 ,外面被 5条α螺旋及一些loop包围 ,活力中心位于疏水结构中央 ,其中有 5个保守氨基酸 ,形成 1个较强的负电荷区 ,周围有 3个较弱的正电荷区域 .实验还发现 ,虽然Mn2 + 或Co2 + 对酶的活性极其重要 ,但对酶蛋白结构的贡献很小 .提示它们可能是在催化反应的电荷转移过程中发挥着重要作用  相似文献   
58.
Zhang Y  Xu C  Lu Z  Yang Y  Ge F  Zhu G  Teng M  Niu L 《Current microbiology》2002,44(4):273-279
The plasmid pUT for homologous recombination was constructed by the insertion of the 1.1-kb thiostrepton resistance (tsr R) gene into the E. coli plasmid pUB1-GI1. Plasmid pUTK was produced through ligating the cleaved plasmid pUT by KpnI. After pUT and pUTK were introduced into Streptomyces diastaticus No.7 strain M1033 (SM33) by protoplast transformation, a series of tsrR transformants were obtained, further based on enzyme assays. These results for polymerase chain reaction (PCR), DNA sequencing, restriction enzyme digestion, and recovery of cloned fragments from the transformant chromosome demonstrated the plasmid pUT and pUTK had integrated into the SM33 chromosome in three different patterns of single cross-over by homologous recombination. This directly results in double-copy GI gene in the transformant chromosome, of which one is wild-type GI gene, the other mutant GI (GIG138P, GI1) gene. Among the strains of the three kinds of recombinant patterns, one transformant was chosen and named K1, T2, and T3, respectively. The further identification of the three recombinant strains by PCR, DNA sequencing, restriction enzyme digestion, and Southern hybridization also proved there is a double-copy GI gene within their chromosome. Enzyme activity assay and thermostability analysis indicated that all three engineering strains expressed not only wild-type enzyme but also mutant GI. Received: 9 July 2001 / Accepted: 8 August 2001  相似文献   
59.
60.
The p21-activated kinases (PAKs), in common with many kinases, undergo multiple autophosphorylation events upon interaction with appropriate activators. The Cdc42-induced phosphorylation of PAK serves in part to dissociate the kinase from its partners PIX and Nck. Here we investigate in detail how autophosphorylation events affect the catalytic activity of PAK by altering the autophosphorylation sites in both alpha- and betaPAK. Both in vivo and in vitro analyses demonstrate that, although most phosphorylation events in the PAK N-terminal regulatory domain play no direct role in activation, a phosphorylation of alphaPAK serine 144 or betaPAK serine 139, which lie in the kinase inhibitory domain, significantly contribute to activation. By contrast, sphingosine-mediated activation is independent of this residue, indicating a different mode of activation. Thus two autophosphorylation sites direct activation while three others control association with focal complexes via PIX and Nck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号