首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6231篇
  免费   450篇
  国内免费   4篇
  2024年   5篇
  2023年   21篇
  2022年   66篇
  2021年   113篇
  2020年   92篇
  2019年   123篇
  2018年   167篇
  2017年   131篇
  2016年   226篇
  2015年   316篇
  2014年   382篇
  2013年   413篇
  2012年   561篇
  2011年   536篇
  2010年   324篇
  2009年   304篇
  2008年   410篇
  2007年   375篇
  2006年   314篇
  2005年   304篇
  2004年   308篇
  2003年   236篇
  2002年   211篇
  2001年   132篇
  2000年   131篇
  1999年   97篇
  1998年   35篇
  1997年   32篇
  1996年   24篇
  1995年   23篇
  1994年   22篇
  1993年   16篇
  1992年   24篇
  1991年   30篇
  1990年   27篇
  1989年   16篇
  1988年   17篇
  1987年   8篇
  1986年   7篇
  1985年   10篇
  1984年   8篇
  1982年   7篇
  1980年   7篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1975年   6篇
  1973年   6篇
  1971年   6篇
排序方式: 共有6685条查询结果,搜索用时 62 毫秒
51.
Glycosylated, membrane-associated E1 (58-kDa) and E2 (47- to 49-kDa) rubella virus proteins and unglycosylated nucleoprotein C (33 kDa), from separately expressed vaccinia virus recombinants, were injected into golden Syrian hamsters. Rubella virus E1 and E2 glycoproteins consistently induced an organ-specific autoimmune disease, autoimmune lymphocytic hypophysitis, which was evidenced by the induction of autoantibodies against pituitary cells and by lymphocytic infiltration of the pituitary. Neonatal thymectomy prevented the disease. In contrast, rubella virus nucleoprotein C did not induce either autoantibodies against pituitary cells or lymphocytic infiltration of the pituitary. This finding raises the possibility that virus-specific protein itself can induce an organ-specific autoimmune disease in certain circumstances.  相似文献   
52.
Biochanin A, an isoflavone, has previously been shown to inhibit the metabolic activation of the carcinogen benzo[a]pyrene (B[a]P) to metabolites that bind to DNA in hamster embryo cells and are mutagenic in Chinese hamster V79 cells. To determine the structural features required for this activity and to attempt to find more effective inhibitors, a series of synthetic and naturally occurring flavonids were tested for their ability to modulate B[a]P metabolism in hamster embryo cell cultures. The observed structure-activity relationships indicate that the structural features of flavonoids important for effective inhibition of B[a]P metabolism in hamster embryo cells are the presence of two hydroxyl, two methoxyl, or methyl and hydroxyl substituents at the 5- and 7-positions and a 2,3-double bond. Flavones are slightly better inhibitors of B[a]P metabolism than the corresponding isoflavones. A substituent at the 4'-position is not essential for inhibition of B bdP metabolism. The presence of a hydroxyl group at position 3 slightly enhances activity. Apigenin, acacetin and kaempferide are effective inhibitors of B[a]P-induced mutagenesis in a hamster embryo cell-mediated V79 cell mutation assay. However, apigenin is cytotoxic at the inhibitory dose, whereas acacetin and kaempferide are not. These results suggest that acacetin and kaempferide are promising candidates for in vivo testing as potential chemopreventive agents.  相似文献   
53.
Summary A mutant strain lacking in activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was screened after UV-treatment ofPseudomonas sp. CU6. The properties of the two strains, original and mutant, were compared on the basis of parameter values estimated from kinetic simulations of the enzymatic formation of L-cysteine from D,L-ATC. Both strains suffered from product inhibition, though inhibition was less for the mutant strain.  相似文献   
54.
Saccharomyces cerevisiae strains containing mutations of the HIS4 translation initiation AUG codon were studied by reversion analysis in an attempt to identify components of the translation initiation complex that might participate in initiation site selection during the scanning process. The genetic characterization of these revertants identified three unlinked suppressor loci: SUI1, SUI2 and sui3, which when mutated restored the expression of the HIS4 allele despite the absence of the AUG initiator codon. Both sui1 and sui2 are recessive and cause temperature-sensitive growth on enriched medium. The temperature-sensitive phenotype and the ability to restore HIS4 expression associated with either sui1 or sui2 mutations cosegregate in crosses. SUI3 mutations are dominant and do not alter the thermal profile for growth. None of the mutations at the three loci suppresses known frameshift, missense or nonsense mutations. Each is capable of suppressing the nine different point mutations of the initiator codon at HIS4 or HIS4-lacZ as well as a two base change (ACC) and a three base deletion of the AUG codon, suggesting that the site of suppression resides outside the normal initiator region. sui1 and sui2 suppressor mutations were mapped to chromosomes XIV and X, respectively. Suppression by sui1, sui2 and SUI3 mutations results in 14-, 11- and 47-fold increases, respectively, relative to isogenic parent strains, in the expression of a HIS4 allele lacking the initiator AUG codon. Part of this increase in the HIS4 expression by sui2 and SUI3 can be attributed to increases of HIS4 mRNA levels, presumably mediated by perturbation of the general amino acid control system of yeast.  相似文献   
55.
Phosphorylations of two proteins (27 KDa, 32 KDa) in oat cells were dependent on phytochrome action. To determine which kinase system(s) for the phosphorylation of these two proteins are controlled by the phytochrome, involvement of the Ca2+/DG dependent protein kinase (protein kinase C) was first investigated. When a protein kinase C inhibitor (1-(5-isoquinoline sulfonyl)-2-methylpiperazine:H-7) or the inositol phospholipid metabolic blocker Li+ was added into the cell suspension, respectively, the phosphorylations of these two proteins were substantially reduced. On the other hand, an addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG:activator of protein kinase C) or phorbol 12-myristate 13-acetate (TPA: tumor promoting phorbol ester) enhanced the phosphorylations of these proteins. These results suggest that phytochrome action is certainly connected with the protein phosphorylation via the activation of protein kinase C or a similar molecule with protein kinase C.  相似文献   
56.
Intact secretory granules isolated from bovine adrenal medulla express tyrosine hydroxylase (TH) activity. Granule-associated TH sediments on continuous sucrose gradients with dopamine beta-hydroxylase, a marker for granule membranes, indicating that TH is associated with chromaffin granules. Membranes prepared from lysed granules retain TH, whereas granule contents are free of the enzyme. TH immunoreactivity was detected in granule membranes by immunoblot analysis using a polyclonal antiserum against TH. TH immunoreactivity cannot be removed from membranes by washes in high ionic strength buffers and is only partially removed from membranes by treatment with either urea or Na2CO3. TH can be removed from granule membranes by the detergents Nonidet P-40, Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Treatment of membranes with a phosphatidylinositol-specific phospholipase C did not remove TH, ruling out the possibility of a glycosyl phosphatidyl anchor. Fractionation of granule membranes by temperature-induced phase separation in Triton X-114 revealed that TH is recovered in phases in which integral (detergent phase) and hydrophobic (phospholipid phase) membrane proteins are typically found. By contrast, TH from adrenal cytosol fractionated exclusively into the aqueous phase along with other soluble proteins. Digestion of granules with various protease enzymes revealed that TH is resistant to degradation, suggesting that the enzyme is embedded within membranes. TH becomes phosphorylated when intact granules are exposed to the catalytic subunit of the cAMP-dependent protein kinase, indicating that at least the N-terminal region of TH is exposed on the cytoplasmic surface of granules. These results establish that a fraction of TH is an integral component of bovine granule membranes. The association of TH with granule membranes may play a role in coordinating TH activity and catecholamine release.  相似文献   
57.
We present a simple system which can be used to study directly directly the sequence change and the cellular repair functions involved in frame-shift mutagenesis by a covalently reactive mutagen. Positive (+S) and negative (?S) alterations in the number of base pairs of the Tc gene of pBR322 were generated and particular clones with ApRTcS phenotypes were selected for mutagenesis experiments. Exposure of these frame-shifted plasmid DNAs to a potent carcinogen, N-acetoxy-N-2-acetylaminofluorene (AAAF), in vitro, caused covalent alterations to DNA sequence and resulted in a number of revertants (ApRTcR) not observed in the untreated controls. The dose curve indicated an exponential response suggesting single-hit kinetics. Differential inactivation of the Ap gene was observed among various E. coli strains. The wild-type AB1157 and AB2463 (yrecA) showed a similar dose curve while AB1886 (uvrA) showed a marked decrease in ApR clones at the same dose. Both addition (+S) and deletion (?S) plasmids exhibited similar dose curves on inactivation of Ap gene. The reversion frequency, however, of ?S plasmid was a factor of 10 times higher than +S plasmid. The reversion frequency also increase markedly with uvrA host but not with recA host. 2 types of deletion revertants of the +S plasmid were found. 1 revertant has a single GC base-pair deletion in GC-rich region which is likely to be a target for AAAF reaction. The other showed a deletion of 4 base pairs (TCGA) at the tandem repeating sequence TCGATCGA which may represent a hot spot for frame-shift mutation.  相似文献   
58.
59.
The phylogenetic relationships of seven species of the genus Antopocerus (Family Drosophilidae) have been determined by means of a study of the metaphase configurations and polytene chromosomes. Based on biogeographical, behavioral and cytogenetic information, A. longiseta from Molokai is tentatively identified as the primitive species of the genus. The metaphase karyotypes of all Antopocerus species are either five pairs of rod chromosomes and a pair of dots (5R1D), or six rods (6R). Heterochromatin additions converted the dots to rods. Chromosome breakpoints for inversions also are clustered at heterochromatic loci. The chromosome segments between heterochromatic loci may represent sets of functionally related loci, evolving as a unit. The rate of chromosomal inversion substitution is estimated in the origin of the taxon (probably a subgenus of Drosophila rather than a separate genus). It averages no greater than one substitution per 1,000 years, or one per 5,000 generations. The average genetic death rate per generation of one individual per hundred is required to achieve this substitution rate. The rate of inversion substitution during radiation of this taxon may be only 4.4 x 10-3 times as fast as that present in forming the taxon. Alternatively, radiation may have required only 250,000 years if rates of substitution are the same as in the origination of the taxon. Average rates of substitution reflect genetic accidents, selection pressures and rates of adaptation to new niches, as well as the rate of encountering new niches. Rate of adaptation probably is much greater in this instance than rate of encountering new niches. Therefore, the average rate of evolution reflects more nearly biogeographic and ecological factors than genetic factors.  相似文献   
60.
Parkinson’s disease (PD) is a neurodegenerative disease featured by selective loss of substantia nigra neurons. Rotenone administration in animals induces neurodegeneration accompanied by α-synuclein-positive Lewy body-like inclusions, recapturing typical histopathological features of PD. In an effort to screen for small-molecule agents to reverse rotenone-induced cytotoxicity, we developed and validated a sensitive and robust assay with neuroblastoma SK-N-SH cells. This assay was amenable to a high-throughput screening format with Z′ factor of 0.56. Robotic screening of a bioactive compound library led to the identification of carnosic acid that can effectively protect cells from rotenone treatment. Using a high-content image-based assay and Western blot analysis, we demonstrated that carnosic acid protects cells from rotenone stress by significant induction of HSP70 expression. Therefore, the assay reported here can be used to identify novel cytoprotective agents for clinical therapeutics of PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号