首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2671篇
  免费   129篇
  国内免费   2篇
  2802篇
  2023年   10篇
  2022年   15篇
  2021年   35篇
  2020年   30篇
  2019年   49篇
  2018年   71篇
  2017年   45篇
  2016年   105篇
  2015年   130篇
  2014年   125篇
  2013年   176篇
  2012年   217篇
  2011年   200篇
  2010年   138篇
  2009年   93篇
  2008年   163篇
  2007年   174篇
  2006年   206篇
  2005年   160篇
  2004年   129篇
  2003年   138篇
  2002年   114篇
  2001年   19篇
  2000年   12篇
  1999年   15篇
  1998年   20篇
  1997年   10篇
  1996年   11篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   16篇
  1989年   11篇
  1988年   13篇
  1987年   5篇
  1986年   6篇
  1985年   10篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   11篇
  1980年   14篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
排序方式: 共有2802条查询结果,搜索用时 15 毫秒
91.
A series of arylsulfonamides containing guanidine incorporated in the structure of secondary amines (piperidine, piperazine) was synthesized on SynPhase Lanterns and evaluated for 5-HT1A, 5-HT2A, and 5-HT7 receptors. The results demonstrated that N-alkyl-N′-dialkylguanidines displayed good 5-HT7/5-HT1A selectivity and may be regarded as promising structural core for development of 5-HT7 ligands.  相似文献   
92.
Background: Genetic predispositions to disease have focused on highly penetrant causative changes in tumor suppressor genes or genes associated with DNA mismatch repair. New investigations are revealing new genetic associations with disease that are more subtle in their association with disease and require characterization. Methods: In this report we have examined the tumor characteristics in a group of patients who have been shown to harbor two polymorphisms in two genes that are associated with the immune system NOD2 and TNFα. Results: Colorectal cancers from patients with NOD2 3020insC and TNFα-1031T/T constitutional changes are mostly right-sided disease (OR = 2.21, p = 0.03) with a tendency to higher stages (OR = 2.41, p = 0.06), increased number of associated polyps (OR = 1.77, p = 0.16) and later age of average age of disease onset (p = 0.039). Conclusion: The results reveal that there appear to be specific characteristics associated with the tumors that may aid in determining management strategies to reduce the risk of disease.  相似文献   
93.
Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.  相似文献   
94.
Investigating the methylation status of the circadian genes may contribute to a better understanding of the shift work-related circadian disruption in individuals exposed to artificial light at night. In the present study, we determined the methylation status of the circadian genes associated with a shift work pattern among nurses and midwives participating in a cross-sectional study in Lodz, Poland.

Quantitative methylation polymerase chain reaction assays were used to assess promoter CpG methylation in PER1, PER2, PER3, CRY1, CRY2, BMAL1, CLOCK, and NPAS2 in genomic DNA from whole blood of 347 women having a rotating-shift work schedule and 363 women working days only. The percentage of methylated reference (PMR) was assessed using fluorescent probes for PER1, PER2, PER3, CRY1, and NPAS2, and the percentage of gene methylation, as the methylation index (MI), using two sets of primers for BMAL1, CLOCK, and CRY2.

We tested the possible association between current and lifetime rotating night-shift work characteristics and circadian gene methylation by using proportional odds regression model with blood DNA methylation, categorized into tertiles, and adjusted for age, current smoking status, folate intake and blood collection time. The findings indicated that CpG methylation in PER2 promoter was significantly decreased (P < 0.004) among nurses and midwives currently working rotating shifts, as compared with day-working nurses and midwives. The lower percentage of PER2 methylation was associated with a higher monthly frequency of current night duties (2–7 night shifts, and eight or more night shifts per month) (P = 0.012) and was associated at borderline significance (P = 0.092) with the lifetime duration of shift work (>10 ≤ 20 years and >20 ≤ 43 years of rotating-shift work) among nurses and midwives (N = 710). Moreover, women with a longer lifetime duration of shift work presented a lower status of PER1 methylation (P = 0.040) than did the women with up to 10 years of rotating-shift work. Long lifetime duration of shift work (> 10 years) among current rotating night-shift workers (N = 347) was associated with BMAL1 hypomethylation (P = 0.013).

Among eight of the investigated circadian genes, only PER1, PER2, and BMAL1 showed differential methylation attributable to the rotating-shift work of nurses and midwives. The findings on blood-based DNA methylation in the circadian genes may provide a better insight into the mechanistic principles underlying the possible health effects of night-shift work but these should be verified in further studies recruiting larger populations of shift workers.  相似文献   

95.
We have investigated heat-shock response in a marine bacterium Vibrio harveyi. We have found that 39 C was the highest tempature at which V. harveyi was able to grow steadily. A shift from 30° C to 39° C caused increased synthesis of at least 10 proteins, as judged by SDS-PAGE, with molecular masses of 90, 70, 58, 41, 31, 27, 22, 15, 14.5 and 14kDa. The 70, 58, 41 and 14.5 kDa proteins were immunologically homologous to DnaK, GroEL, DnaJ and GroES heat-shock proteins of Escherichia coli, respectively. V. harveyi GroES protein had a lower molecular mass (14.5 kDa) than E. coli GroES, migrating in SDS-PAGE as 15 kDa protein. We showed that a protein of ~43 kDa, immunologically reactive with antiserum against E. coli sigma 32 subunit (σ32) of RNA polymerase, was induced by heat-shock and co-purified with V. harveyi RNA polymerase. These results suggest that the 43 kDa protein is a heat-shock sigma protein of V. harveyi. Preparation containing the V. harveyi sigma 32 homologue, supplemented with core RNA polymerase of E. coli, was able to transcribe heat-shock promoters of E. coli in vitro.  相似文献   
96.
Several bacterial genera express proteins that contain collagen-like regions, which are associated with variable (V) non-collagenous regions. The streptococcal collagen-like proteins, Scl1 and Scl2, of group A Streptococcus (GAS) are members of this 'prokaryotic collagen' family, and they too contain an amino-terminal non-collagenous V region of unknown function. Here, we use recombinant rScl constructs, derived from several Scl1 and Scl2 variants, and affinity chromatography to identify Scl ligands present in human plasma. First, we show that Scl1, but not Scl2, proteins from different GAS serotypes bind the same ligand identified as apolipoprotein B (ApoB100), which is a major component of the low-density lipoprotein (LDL). Scl1 binding to purified ApoB100 and LDL is specific and concentration-dependent. Furthermore, the non-collagenous V region of the Scl1 protein is responsible for LDL/ApoB100 binding because only those rScls, constructed by domain swapping, which contain the V region from Scl1 proteins, were able to bind to ApoB100 and LDL ligands, and this binding was inhibited by antibodies directed against the Scl1-V region. Electron microscopy images of Scl1-LDL complexes showed that the globular V domain of Scl1 interacted with spherical particles of LDL. Importantly, live M28-type GAS cells absorbed plasma LDL on the cell surface and this binding depended on the surface expression of the Scl1.28, but not Scl2.28, protein. Phylogenetic analysis showed that the non-collagenous globular domains of Scl1 and Scl2 evolved independently to form separate lineages, which differ in amino acid sequence, and these differences may account for the variations in binding patterns of Scl1 and Scl2 proteins. Present studies provide insight into the structure-function relationship of the Scl proteins and also underline the importance of lipoprotein binding by GAS.  相似文献   
97.
HMGA proteins and their genes are described in this article. HMGA proteins reveal ability to bind DNA in AT-rich regions, which are characteristic for gene promoter sequences. This interaction lead to gene silencing or their overexpression. In normal tissue HMGA proteins level is low or even undetectable. During embriogenesis their level is increasing. High HMGA proteins level is characteristic for tumor phenotype of spontaneous and experimental malignant neoplasms. High HMGA proteins expression correlate with bad prognostic factors and with metastases formation. HMGA genes expression can be used as a marker of tumor progression. Present studies connected with tumor gene therapy based on HMGA proteins sythesis inhibition by the use of viral vectors containing gene encoding these proteins in antisence orientation, as well as a new potential anticancer drugs acting as crosslinkers between DNA and HMGA proteins suggest their usefulness as a targets in cancer therapy.  相似文献   
98.
99.
PUFA metabolites have a profound effect on inflammatory diseases and cancer progression. Blocking their production by inhibiting PUFA metabolizing enzymes (dioxygenases: cyclooxygenases and LOXs) might be a successful way to control and relieve such problems, if we learn to better understand their actions at a molecular level. Compounds with strong antioxidative and free radical scavenging properties, such as polyphenols, could be effective in blocking PUFA activities, and natural flavonoids possess such qualities. Quercetin belongs to the group of natural catecholic compounds and is known as a potent, competitive inhibitor of LOX. Structural analysis reveals that quercetin entrapped within LOX undergoes degradation, and the resulting compound has been identified by X-ray analysis as protocatechuic acid (3,4-dihydroxybenzoic acid) positioned near the iron site. Its C3-OH group points toward His523, C4-OH forms a hydrogen bond with O=C from the enzyme's C-terminus, and the carboxylic group is incorporated into the hydrogen bonding network of the active-site neighborhood via Gln514. This unexpected result, together with our previous observations concerning other polyphenols, yields new evidence about the metabolism of natural flavonoids. These compounds might be vulnerable to the co-oxidase activity of LOX, leading to enzyme-stimulated oxidative degradation, which results in an inhibitor of a lower molecular weight.  相似文献   
100.
Calcitriol, the hormonal form of vitamin D3, induces differentiation of monocytic leukemia cell lines in vitro, without inducing cytotoxicity of the cells. Besides this broad in vitro activity, a clinical implementation of calcitriol, or its analogs, as agents for differentiation therapy has been unsuccessful until now. A better understanding of cellular activities of calcitriol necessary for completion of cell differentiation program could help find better solutions for differentiation therapy of myeloid leukemias. In this paper we describe work carried on subline of acute monocytic leukemia, THP-1 resistant to calcitriol induced differentiation. This resistance correlates with impaired nuclear localization of vitamin D receptor, but not with its total expression in the cells. It also correlates with the resistance to calcitriol-induced growth inhibition, and to phorbol myristate acetate (PMA)-induced cell differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号