首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12131篇
  免费   778篇
  国内免费   8篇
  12917篇
  2024年   22篇
  2023年   49篇
  2022年   152篇
  2021年   232篇
  2020年   131篇
  2019年   205篇
  2018年   296篇
  2017年   245篇
  2016年   424篇
  2015年   615篇
  2014年   745篇
  2013年   800篇
  2012年   1068篇
  2011年   1043篇
  2010年   649篇
  2009年   498篇
  2008年   788篇
  2007年   674篇
  2006年   611篇
  2005年   559篇
  2004年   570篇
  2003年   452篇
  2002年   360篇
  2001年   357篇
  2000年   327篇
  1999年   227篇
  1998年   89篇
  1997年   79篇
  1996年   49篇
  1995年   48篇
  1994年   38篇
  1993年   29篇
  1992年   83篇
  1991年   54篇
  1990年   44篇
  1989年   48篇
  1988年   27篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   12篇
  1980年   12篇
  1979年   9篇
  1978年   15篇
  1975年   14篇
  1974年   11篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
811.
Hub proteins are proteins that maintain promiscuous molecular recognition. Because they are reported to play essential roles in cellular control, there has been a special interest in the study of their structural and functional properties, yet the mechanisms by which they evolve to maintain functional interactions are poorly understood. By combining biophysical simulations of coarse-grained proteins and analysis of proteins-complex crystallographic structures, we seek to elucidate those mechanisms. We focus on two types of hub proteins: Multi hubs, which interact with their partners through different interfaces, and Singlish hubs, which do so through a single interface. We show that loss of structural stability is required for the evolution of protein-protein-interaction (PPI) networks, and it is more profound in Singlish hub systems. In addition, different ratios of hydrophobic to electrostatic interfacial amino acids are shown to support distinct network topologies (i.e., Singlish and Multi systems), and therefore underlie a fundamental design principle of PPI in a crowded environment. We argue that the physical nature of hydrophobic and electrostatic interactions, in particular, their favoring of either same-type interactions (hydrophobic-hydrophobic), or opposite-type interactions (negatively-positively charged) plays a key role in maintaining the network topology while allowing the protein amino acid sequence to evolve.  相似文献   
812.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   
813.
The mammalian trematode Paragonimus westermani is a typical digenetic parasite, which can cause paragonimiasis in humans. Host tissues and blood cells are important sources of nutrients for development, growth and reproduction of P. westermani. In this study, a cDNA clone encoding a 47 kDa hemoglobinase of P. westermani was characterized by sequencing analysis, and its localization was investigated immunohistochemically. The phylogenetic tree prepared based on the hemoglobinase gene showed high homology with hemoglobinases of Fasciola hepatica and Schistosoma spp. Moreover, recombinant P. westermani hemoglobinase degradaded human hemoglobin at acidic pH (from 3.0 to 5.5) and its activity was almost completely inhibited by E-64, a cysteine proteinase inhibitor. Immunohistochemical studies showed that P. westermani hemoglobinase was localized in the epithelium of the adult worm intestine implying that the protein has a specific function. These observations suggest that hemoglobinase may act as a digestive enzyme for acquisition of nutrients from host hemoglobin. Further investigations may provide insights into hemoglobin catabolism in P. westermani.  相似文献   
814.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.  相似文献   
815.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   
816.
Like tumor cells, DNA viruses have had to evolve mechanisms that uncouple cellular replication from the many intra- and extracellular factors that normally control it. Here we show that adenovirus encodes two proteins that activate the mammalian target of rapamycin (mTOR) for viral replication, even under nutrient/growth factor-limiting conditions. E4-ORF1 mimics growth factor signaling by activating PI3-kinase, resulting in increased Rheb.GTP loading and mTOR activation. E4-ORF4 is redundant with glucose in stimulating mTOR, does not affect Rheb.GTP levels and is the major mechanism whereby adenovirus activates mTOR in quiescent primary cells. We demonstrate that mTOR is activated through a mechanism that is dependent on the E4-ORF4 protein phosphatase 2A-binding domain. We also show that mTOR activation is required for efficient S-phase entry, independently of E2F activation, in adenovirus-infected quiescent primary cells. These data reveal that adenovirus has evolved proteins that activate the mTOR pathway, irrespective of the cellular microenvironment, and which play a requisite role in viral replication.  相似文献   
817.

Objective

To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required.

Results

A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5–2 g levulinic acid/l and recovered from HMF inhibition at 0.6–2.5 g/l, resulting in 85–92 % butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l.

Conclusion

Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.
  相似文献   
818.
819.
Genus Campylobacter has been recognized as a causative bacterial agent of animal and human diseases. Human Campylobacter infections have caused more concern. Campylobacters can be classified into two groups in terms of their original host: zoonotic and human oral species. The major zoonotic species are Campylobacter jejuni and Campylobacter coli, which mostly reside in the intestines of avian species and are transmitted to humans via consumption of contaminated poultry products, thus causing human gastroenteritis and other diseases as sequelae. The other campylobacters, human oral species, include C. concisus, C. showae, C. gracilis, C. ureolyticus, C. curvus, and C. rectus. These species are isolated from the oral cavity, natural colonization site, but have potential clinical relevance in the periodontal region to varying extent. Two species, C. jejuni and C. coli, are believed to be mainly associated with intestinal diseases, but recent studies suggested that oral Campylobacter species also play a significant role in intestinal diseases. This review offers an outline of the two Campylobacter groups (zoonotic and human oral), their virulence traits, and the associated illnesses including gastroenteritis.  相似文献   
820.
Objective: ob/ob mice have increased sensitivity to many of leptin's effects. The primary objective of this experiment was to determine whether ob/ob mice demonstrated increased sensitivity to leptin‐induced adipose tissue apoptosis. Research Methods and Procedures: Fifteen‐week‐old female ob/ob and Ob/? mice received 0 (saline), 2.5, or 10 μg/d leptin for 14 days through subcutaneous (sc) osmotic minipumps. Food intake (FI), body temperature, physical activity, and body weight were measured daily. Body composition and weights and adipose tissue apoptosis (percentage DNA fragmentation) of inguinal, parametrial, and retroperitoneal fat pads were determined at the end of the study. Results: FI decreases were more pronounced in ob/ob. Leptin (10 μg/d) decreased total FI 71% in ob/ob and 34% in Ob/? (p < 0.05). Body weight was decreased by both doses of leptin in ob/ob (p < 0.01) but was unchanged in Ob/?. Leptin increased body temperature in ob/ob but not in Ob/?. Physical activity was increased 400% by 10 μg/d leptin in ob/ob (p < 0.01) but decreased 13% in Ob/? (p < 0.01). Body fat content of ob/ob was reduced by both leptin doses, whereas only 10 μg/d leptin decreased body fat in Ob/?. Fat pad weights were decreased similarly by leptin in both genotypes. However, apoptosis was increased by leptin in all three fat pads in ob/ob, whereas Ob/? showed significant increases only in retroperitoneal. Discussion: ob/ob mice had greater overall sensitivity to leptin. Although ob/ob mice appeared to be more sensitive than Ob/? mice to leptin‐induced adipose tissue apoptosis, there were differences among adipose depots in responsiveness to leptin‐induced apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号