首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12144篇
  免费   778篇
  国内免费   7篇
  2024年   22篇
  2023年   49篇
  2022年   138篇
  2021年   232篇
  2020年   131篇
  2019年   205篇
  2018年   297篇
  2017年   245篇
  2016年   427篇
  2015年   618篇
  2014年   748篇
  2013年   800篇
  2012年   1066篇
  2011年   1044篇
  2010年   651篇
  2009年   499篇
  2008年   788篇
  2007年   677篇
  2006年   611篇
  2005年   559篇
  2004年   572篇
  2003年   452篇
  2002年   360篇
  2001年   357篇
  2000年   328篇
  1999年   229篇
  1998年   91篇
  1997年   77篇
  1996年   49篇
  1995年   48篇
  1994年   39篇
  1993年   31篇
  1992年   83篇
  1991年   55篇
  1990年   44篇
  1989年   49篇
  1988年   27篇
  1987年   29篇
  1986年   22篇
  1985年   24篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1975年   13篇
  1974年   11篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
861.
Human adipose‐derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5‐azacytidine (5‐aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co‐culture with neonatal rat cardiomyocytes. 5‐aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5‐ to 1.9‐fold) and the number of cells co‐expressing nkx2.5/sarcomeric α‐actin (27.2%versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11‐fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA‐treated cells also stained positively for cardiac myosin heavy chain, α‐actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non‐contact co‐culture showed no cardiac differentiation; however, ASCs co‐cultured in direct contact co‐culture exhibited a time‐dependent increase in cardiac actin mRNA expression (up to 33‐fold) between days 3 and 14. Immunocytochemistry revealed co‐expression of GATA4 and Nkx2.5, α‐actin, TropI and cardiac myosin heavy chain in CM‐DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell‐to‐cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co‐culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.  相似文献   
862.
Adipogenesis is a complex process that is accompanied by a number of molecular events. In this study, a proteomic approach was adopted to identify secretory factors associated with adipogenesis. A label‐free shotgun proteomic strategy was implemented to analyze proteins secreted by human adipose stromal vascular fraction cells and differentiated adipocytes. A total of 474 proteins were finally identified and classified according to quantitative changes and statistical significances. Briefly, 177 proteins were significantly upregulated during adipogenesis (Class I), whereas 60 proteins were significantly downregulated (Class II). Changes in the expressions of several proteins were confirmed by quantitative RT‐PCR and immunoblotting. One obvious finding based on proteomic data was that the amounts of several extracellular modulators of Wnt and transforming growth factor‐β (TGF‐β) signaling changed during adipogenesis. The expressions of secreted frizzled‐related proteins, dickkopf‐related proteins, and latent TGF‐β‐binding proteins were found to be altered during adipogenesis, which suggests that they participate in the fine regulation of Wnt and TGF‐β signaling. This study provides useful tools and important clues regarding the roles of secretory factors during adipogenic differentiation, and provides information related to obesity and obesity‐related metabolic diseases.  相似文献   
863.
Orientia tsutsugamushi, an obligate intracellular bacterium, is the causative agent of Scrub typhus. The control mechanisms for bacterial gene expression are largely unknown. Here, the global gene expression of O. tsutsugamushi within eukaryotic cells was examined using a microarray and proteomic approaches for the first time. These approaches identified 643 genes, corresponding to approximately 30% of the genes encoded in the genome. The majority of expressed genes belonged to several functional categories including protein translation, protein processing/secretion, and replication/repair. We also searched the conserved sequence blocks (CSBs) in the O. tsutsugamushi genome which is unique in that up to 40% of its genome consists of dispersed repeated sequences. Although extensive shuffling of genomic sequences was observed between two different strains, 204 CSBs, covering 48% of the genome, were identified. When combining the data of CSBs and global gene expression, the CSBs correlates well with the location of expressed genes, suggesting the functional conservation between gene expression and genomic location. Finally, we compared the gene expression of the bacteria‐infected fibroblasts and macrophages using microarray analysis. Some major changes were the downregulation of genes involved in translation, protein processing and secretion, which correlated with the reduction in bacterial translation rates and growth within macrophages.  相似文献   
864.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   
865.
In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague–Dawley rats fed with a high‐fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8 wk. After HFD feeding, capsaicin‐treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2‐DE for detection of HFD‐associated markers. Proteomic analysis using 2‐DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD‐fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP‐activated protein kinase (AMPIC) CP3 and acetyl‐CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK‐ACC‐malonyl‐CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet‐induced alterations of protein expression that are essential for energy expenditure in rat muscle.  相似文献   
866.
867.
868.
869.
Peptide mass fingerprinting (PMF) has become one of the most widely used methods for rapid identification of proteins in proteomics research. Many peaks, however, remain unassigned after PMF analysis, partly because of post-translational modification and the limited scope of protein sequences. Almost all PMF tools employ only known or predicted protein sequences and do not include open reading frames (ORFs) in the genome, which eliminates the chance of finding novel functional peptides. Unlike most tools that search protein sequences from known coding sequences, the tool we developed uses a database for theoretical small ORFs (tsORFs) and a PMF application using a tsORFs database (tsORFdb). The tsORFdb is a database for ORFeome that encompasses all potential tsORFs derived from whole genome sequences as well as the predicted ones. The massProphet system tries to extend the search scope to include the ORFeome using the tsORFdb. The tsORFdb and massProphet should be useful for proteomics research to give information about unknown small ORFs as well as predicted and registered proteins.  相似文献   
870.
Kim OH  Kim YO  Shim JH  Jung YS  Jung WJ  Choi WC  Lee H  Lee SJ  Kim KK  Auh JH  Kim H  Kim JW  Oh TK  Oh BC 《Biochemistry》2010,49(47):10216-10227
Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the β-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号