全文获取类型
收费全文 | 12131篇 |
免费 | 772篇 |
国内免费 | 8篇 |
专业分类
12911篇 |
出版年
2024年 | 22篇 |
2023年 | 49篇 |
2022年 | 152篇 |
2021年 | 232篇 |
2020年 | 131篇 |
2019年 | 205篇 |
2018年 | 295篇 |
2017年 | 244篇 |
2016年 | 424篇 |
2015年 | 615篇 |
2014年 | 746篇 |
2013年 | 797篇 |
2012年 | 1066篇 |
2011年 | 1042篇 |
2010年 | 648篇 |
2009年 | 498篇 |
2008年 | 787篇 |
2007年 | 676篇 |
2006年 | 612篇 |
2005年 | 558篇 |
2004年 | 570篇 |
2003年 | 452篇 |
2002年 | 366篇 |
2001年 | 355篇 |
2000年 | 327篇 |
1999年 | 227篇 |
1998年 | 89篇 |
1997年 | 78篇 |
1996年 | 49篇 |
1995年 | 48篇 |
1994年 | 38篇 |
1993年 | 29篇 |
1992年 | 83篇 |
1991年 | 54篇 |
1990年 | 44篇 |
1989年 | 48篇 |
1988年 | 27篇 |
1987年 | 28篇 |
1986年 | 21篇 |
1985年 | 23篇 |
1984年 | 13篇 |
1983年 | 15篇 |
1982年 | 12篇 |
1981年 | 12篇 |
1980年 | 11篇 |
1979年 | 9篇 |
1978年 | 15篇 |
1975年 | 13篇 |
1974年 | 11篇 |
1970年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
During endochondral ossification, a process that accounts for the majority of bone formation in vertebrates, hypertrophic chondrocytes display a greater susceptibility to apoptosis when compared to proliferating chondrocytes. However, the molecular mechanisms underlying this phenomenon remain unclear. Nkx3.2, a member of the NK class of homeoproteins, is initially expressed in chondrogenic precursor cells, and later, during cartilage maturation, its expression is restricted to proliferating chondrocytes. Here, we show that the nuclear factor kappa B (NF-kappaB) pathway is required for chondrocyte viability and that Nkx3.2 supports chondrocyte survival by constitutively activating RelA. Although signal-dependent NF-kappaB activation has been intensively studied, ligand-independent NF-kappaB activation is poorly understood. The data presented here support a novel ligand-independent mechanism of NF-kappaB activation, whereby Nkx3.2 recruits the RelA-IkappaBalpha heteromeric complex into the nucleus by direct protein-protein interactions and activates RelA through proteasome-dependent IkappaBalpha degradation in the nucleus. Furthermore, we demonstrate that stage-specific NF-kappaB activation, mediated by Nkx3.2, regulates chondrocyte viability during cartilage maturation. 相似文献
32.
Lawren VandeVrede Ramy Abdelhamid Zhihui Qin Jaewoo Choi Sujeewa Piyankarage Jia Luo John Larson Brian M. Bennett Gregory R. J. Thatcher 《PloS one》2013,8(8)
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3rd generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer''s transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events. 相似文献
33.
Kang SI Jin YJ Ko HC Choi SY Hwang JH Whang I Kim MH Shin HS Jeong HB Kim SJ 《Biochemical and biophysical research communications》2008,373(2):265-269
The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes. 相似文献
34.
Shen Wang Cong Ma Shen Wang Ucheor B Choi Jihong Gong Xiaoyu Yang Yun Li Austin L Wang Xiaofei Yang Axel T Brunger Cong Ma 《The EMBO journal》2017,36(6):816-829
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1 adopts a closed conformation when bound to Munc18-1, preventing binding to synaptobrevin-2 and SNAP-25 to form the ternary SNARE complex. Although it is known that the MUN domain of Munc13-1 catalyzes the transition from the Munc18-1/syntaxin-1 complex to the SNARE complex, the molecular mechanism is unclear. Here, we identified two conserved residues (R151, I155) in the syntaxin-1 linker region as key sites for the MUN domain interaction. This interaction is essential for SNARE complex formation in vitro and synaptic vesicle priming in neuronal cultures. Moreover, this interaction is important for a tripartite Munc18-1/syntaxin-1/MUN complex, in which syntaxin-1 still adopts a closed conformation tightly bound to Munc18-1, whereas the syntaxin-1 linker region changes its conformation, similar to that of the LE mutant of syntaxin-1 when bound to Munc18-1. We suggest that the conformational change of the syntaxin-1 linker region induced by Munc13-1 initiates ternary SNARE complex formation in the neuronal system. 相似文献
35.
36.
Jae-Seong Lee Ryeo-Ok Kim Jae-Sung Rhee Jeonghoon Han Dae-Sik Hwang Beom-Soon Choi Chang Joo Lee Yong-Dal Yoon Jong-Sung Lim Young-Mi Lee Gyung Soo Park Atsushi Hagiwara Ik-Young Choi 《Hydrobiologia》2011,662(1):65-75
The monogonont rotifer, Brachionus ibericus (S type), is considered to be a promising model species for developmental biology, evolution, and environmental genomics. In an attempt to accelerate the molecular understanding of B. ibericus, we sequenced 680.5 Mb of genomic DNA using the genome sequencer GS-FLX-Titanium. We obtained 2,062,621 reads (average read length 329.9 bp) and 145,418 contigs (total contigs length 125.7 Mb) after excluding small reads (less than 200 bp) from the assembly, and finally obtained 10,133 unigenes (E value ?? 9.00E?04) after non-redundant (NR) BLAST search. In this article, we summarize the genomic DNA sequences of B. ibericus and discuss their potential use in the study of reproductive biology, endocrinology, environmental genomics, and ecotoxicological studies, and for providing insight into the genetic basis of mechanisms such as egg formation, antioxidant stress defense, and xenobiotic metabolism. 相似文献
37.
38.
39.
Members of the TNF family can promote signals in myeloid cells and both positively and negatively regulate the production of pro-inflammatory cytokines depending on the target myeloid cell type. Using the yeast-two hybrid system, we identified transmembrane protein 126A (TMEM126A) as a binding partner for CD137L (4-1BB ligand). We found that TMEM126A associated and co-localized with CD137L in a mouse macrophage cell line and knockdown of TMEM126A with siRNA abolished the CD137L-induced tyrosine phosphorylation as well as the up-regulation of M-CSF, IL-1β and TN-C expressions. Knockdown of TMEM126A also blocked the down-regulation of IL-1β and IL-6 expressions induced by CD137L in thioglycollate-elicited primary peritoneal macrophages. Knockdown of TMEM126A by stable retroviral TMEM126A shRNA transduction also abolished CD137L-induced tyrosine phosphorylation and cell adherence. These findings identify a novel molecule that bridges TNF family cytokines and pro-inflammatory cytokine secretion in myeloid cells. 相似文献
40.
Shaunak S Godwin A Choi JW Balan S Pedone E Vijayarangam D Heidelberger S Teo I Zloh M Brocchini S 《Nature chemical biology》2006,2(6):312-313
Native disulfide bonds in therapeutic proteins are crucial for tertiary structure and biological activity and are therefore considered unsuitable for chemical modification. We show that native disulfides in human interferon alpha-2b and in a fragment of an antibody to CD4(+) can be modified by site-specific bisalkylation of the two cysteine sulfur atoms to form a three-carbon PEGylated bridge. The yield of PEGylated protein is high, and tertiary structure and biological activity are retained. 相似文献