首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16057篇
  免费   1098篇
  国内免费   8篇
  17163篇
  2023年   64篇
  2022年   175篇
  2021年   279篇
  2020年   165篇
  2019年   241篇
  2018年   356篇
  2017年   290篇
  2016年   518篇
  2015年   774篇
  2014年   930篇
  2013年   1002篇
  2012年   1363篇
  2011年   1313篇
  2010年   826篇
  2009年   661篇
  2008年   1000篇
  2007年   871篇
  2006年   812篇
  2005年   768篇
  2004年   760篇
  2003年   641篇
  2002年   559篇
  2001年   383篇
  2000年   357篇
  1999年   274篇
  1998年   145篇
  1997年   107篇
  1996年   86篇
  1995年   76篇
  1994年   79篇
  1993年   64篇
  1992年   112篇
  1991年   79篇
  1990年   64篇
  1989年   66篇
  1988年   50篇
  1987年   50篇
  1986年   41篇
  1985年   52篇
  1984年   58篇
  1983年   33篇
  1982年   51篇
  1981年   40篇
  1980年   41篇
  1979年   30篇
  1978年   36篇
  1977年   33篇
  1976年   30篇
  1975年   35篇
  1974年   32篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H2O2 during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin‐degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring‐cleavage extradiol dioxygenase in the Exiguobacterium sp. 255‐15; however, unlike other extradiol dioxygenases, Mn2+and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light‐dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high‐density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants.  相似文献   
62.
63.
The conserved protein domain UPF0005 is a protein family signature distributed among many species including fungi and bacteria. Although of unknown functionality this motif has been found in newly identified antiapoptotic proteins comprising the BI-1 family, namely Bax-inhibitory Protein-1 (BI-1), Lifeguard (LFG), and h-GAAP. In a search for vertebrate proteins presumably belonging to the BI-1 family, we found that Growth-hormone inducible transmembrane protein (Ghitm) is another prospective member of the BI-1 family. Here we characterise Ghitm in a first analysis regarding its phylogeny, expression in cancer cell lines, and proteomical properties.  相似文献   
64.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   
65.
Toxic metal contamination in the vicinity of Korean abandoned metal mines has been reported. A risk assessment for these metals was performed for the inhabitants in the area of the abandoned Jukjeon metal mine. Soil, groundwater, and crop samples were collected around the mine. After pretreatment of these samples, metal concentrations were measured and then a risk assessment was performed using the Korean soil-contamination risk assessment guidelines. Phytoaccumulation of metals in crops was observed in soybeans (As and Zn), red peppers (Zn), sweet potatoes (As and Zn), and cabbage (Cu), which had higher metal concentrations than soils in the area. The metal intake rate was highest for inhalation of soil. Cancer risk was highest from ingestion of As-contaminated crops. The sum of carcinogenic risks was 6.29 × 10–3. The non-carcinogenic risk was highest for ingestion of As-contaminated crops (8.17). Most of the risks were attributable to As, Pb, and Hg contamination, therefore these three metals must be considered as the principal metals toxic to human health in the sampled area. In particular, the inhalation of metal-contaminated soil should be considered for risk assessment along with ingestion of water and crops in abandoned mine areas.  相似文献   
66.
Both attractive and repulsive interactions between entangled Methylan chains were investigated with divalent cations that might form a salt bridge or generate an electrostatic attraction between the negatively charged groups in Methylan chains. The chemically induced gelation produces a thermally reversible gel. The gel strength was proportional to Methylan concentration in range from 1 to 5 g/l and was controlled by both Methylan and salt concentrations. © Rapid Science Ltd. 1998  相似文献   
67.
Abstract: The excitatory neurotransmitter glutamate is believed to play important roles in development, synaptic plasticity, and neurodegenerative conditions. Recent studies have shown that neurotrophic factors can modulate neuronal excitability and survival and neurite outgrowth responses to glutamate, but the mechanisms are unknown. The present study tested the hypothesis that neurotrophic factors modulate responses to glutamate by affecting the expression of specific glutamate-receptor proteins. Exposure of cultured embryonic rat hippocampal cells to basic fibroblast growth factor (bFGF) resulted in a concentration-dependent increase in levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor subunit GluR1 protein as determined by western blot, dot-blot, and immunocytochemical analyses. In contrast, bFGF did not alter levels of GluP2/3, GluR4, or the NMDA-receptor subunit NR1. Nerve growth factor did not affect GluR1 levels. Calcium-imaging studies revealed that elevation of [Ca2+]i, resulting from selective AMPA-receptor activation, was enhanced in bFGF-pretreated neurons. On the other hand, [Ca2+]i responses to NMDA-receptor activation were suppressed in bFGF-treated neurons, consistent with previous studies showing that bFGF can protect neurons against NMDA toxicity. Moreover, neurons pretreated with bFGF were relatively resistant to the toxicities of glutamate and AMPA, both of which were shown to be mediated by NMDA receptors. These data suggest that differential regulation of the expression of specific glutamate-receptor subunits may be an important mechanism whereby neurotrophic factors modulate activity-dependent neuronal plasticity and vulnerability to excitotoxicity.  相似文献   
68.

Purpose

Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.

Methods

Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.

Results

Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.

Conclusions

Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions associate with deeper vessel injury affecting vascular smooth muscle cells.  相似文献   
69.
70.
During endochondral ossification, a process that accounts for the majority of bone formation in vertebrates, hypertrophic chondrocytes display a greater susceptibility to apoptosis when compared to proliferating chondrocytes. However, the molecular mechanisms underlying this phenomenon remain unclear. Nkx3.2, a member of the NK class of homeoproteins, is initially expressed in chondrogenic precursor cells, and later, during cartilage maturation, its expression is restricted to proliferating chondrocytes. Here, we show that the nuclear factor kappa B (NF-kappaB) pathway is required for chondrocyte viability and that Nkx3.2 supports chondrocyte survival by constitutively activating RelA. Although signal-dependent NF-kappaB activation has been intensively studied, ligand-independent NF-kappaB activation is poorly understood. The data presented here support a novel ligand-independent mechanism of NF-kappaB activation, whereby Nkx3.2 recruits the RelA-IkappaBalpha heteromeric complex into the nucleus by direct protein-protein interactions and activates RelA through proteasome-dependent IkappaBalpha degradation in the nucleus. Furthermore, we demonstrate that stage-specific NF-kappaB activation, mediated by Nkx3.2, regulates chondrocyte viability during cartilage maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号