首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   88篇
  国内免费   1篇
  1025篇
  2023年   4篇
  2022年   11篇
  2021年   21篇
  2020年   12篇
  2019年   11篇
  2018年   14篇
  2017年   12篇
  2016年   27篇
  2015年   41篇
  2014年   61篇
  2013年   64篇
  2012年   74篇
  2011年   56篇
  2010年   34篇
  2009年   38篇
  2008年   47篇
  2007年   62篇
  2006年   51篇
  2005年   48篇
  2004年   48篇
  2003年   49篇
  2002年   40篇
  2001年   29篇
  2000年   40篇
  1999年   36篇
  1998年   13篇
  1997年   7篇
  1996年   3篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有1025条查询结果,搜索用时 0 毫秒
61.
Granite‐derived soils are widespread in the farmland of Korea in general. In contrast, Jeju Island has mainly volcanic ash soils. Soils and weather condition in Jeju Island created a unique agricultural system. We identified the features of ground‐dwelling insects in farmlands of Jeju Island. This study was conducted in four areas (Samdal‐ri and Susan‐ri in Seogwipo city, and Dongmyeong‐ri and Suwon‐ri in Jeju city) in Jeju Island, Korea. Field surveys were carried out twice in summer (June) and autumn (September) in 2013. Ground‐dwelling insects were sampled quantitatively by using pitfall traps. As a result, in total 3322 individuals, 137 species, 48 families and 8 orders were investigated in farmlands of Jeju Island. Especially, members of Coleoptera and Hymenoptera accounted for a large proportion of ground‐dwelling insect communities. The numbers of species and individuals for major taxonomic groups showed significant regional and seasonal differences. This study implied that the seasonal and regional differences of ground‐dwelling insect communities were affected by surrounding land use patterns, life history patterns of each taxonomic group and farmland management.  相似文献   
62.
123I-Labeled paclitaxel, [123I]-1 was prepared by electrophilic aromatic radioiodination of 3'-N-(p-trimethylstannylbenzoyl)-3'-debenzoylpaclitaxel 2 with 123I- in the presence of peracetic acid.  相似文献   
63.
The selectivity of polyethyleneimine (PEI) in DNA precipitation during chemical extraction was investigated. Chemical extraction was used to recover two His-tagged model proteins: gloshedobin, a thrombin-like enzyme from snake venom, and IbpA, a molecular chaperone, which were expressed mainly in the form of inclusion bodies. High DNA removal efficiency (more than 90%) was achieved at various cell densities (with OD600 ranging from 30 to 150) without affecting the solubility of host cell proteins. Compared to spermine-induced precipitation method reported elsewhere, PEI provided a higher DNA precipitation efficiency at a significantly lower cost. Moreover, PEI obviated the use of EDTA, which has been reported to be essential for the chemical extraction methods, hence exhibiting dual roles in replacing cost-prohibitive spermine and EDTA. The residual PEI in the post-extraction mixture was efficiently counteracted by addition of Mg2+, allowing the streamlined application of the extraction broth to immobilized metal affinity chromatography. Taken together, the PEI-mediated chemical extraction method provides a simpler and more economically viable processing route for the production of recombinant proteins whose expression is hampered by IB formation.  相似文献   
64.
The DNA2 gene of Saccharomyces cerevisiae is essential for growth and appears to be required for a late stage of chromosomal DNA replication. S. cerevisiae Dna2p (ScDna2p) is a DNA helicase and also a nuclease. We have cloned and sequenced the homologous gene from Xenopus (Xenopus Dna2). Xenopus Dna2p (XDna2p) is 32% identical to ScDna2p, and the similarity extends over the entire length, including but not limited to the five conserved helicase motifs. XDna2p is even more closely related (60% identical) to a partial human cDNA. The Xenopus Dna2 (XDna2) gene was able to complement an S. cerevisiae dna2-1 mutant strain for growth at the nonpermissive temperature, suggesting that XDna2p is a functional as well as a structural homolog of the yeast protein. Recombinant XDna2p was expressed in insect cells and purified. Like the ScDna2p purified from yeast, it is a single-stranded DNA endonuclease and a DNA-dependent ATPase, suggesting that both of these activities are part of the essential function of Dna2p. However, unlike ScDna2p from yeast, recombinant XDna2p showed no DNA helicase activity. When XDna2 was immunodepleted from interphase egg extracts, chromosomal DNA replication was almost completely inhibited. From the size of the residually synthesized DNA from the XDna2-depleted egg extracts, it seems that initiation of DNA replication may be impaired. This interpretation is also supported by the normal DNA replication of M13 single-stranded DNA in the XDna2-depleted egg extracts.  相似文献   
65.
Nelson SW  Iancu CV  Choe JY  Honzatko RB  Fromm HJ 《Biochemistry》2000,39(36):11100-11106
Wild-type porcine fructose-1,6-bisphosphatase (FBPase) has no tryptophan residues. Hence, the mutation of Try57 to tryptophan places a unique fluorescent probe in the structural element (loop 52-72) putatively responsible for allosteric regulation of catalysis. On the basis of steady-state kinetics, circular dichroism spectroscopy, and X-ray crystallography, the mutation has little effect on the functional and structural properties of the enzyme. Fluorescence intensity from the Trp57 mutant is maximal in the presence of divalent cations, fructose 6-phosphate and orthophosphate, which together stabilize an R-state conformation in which loop 52-72 is engaged with the active site. The level of fluorescence emission decreases monotonically with increasing levels of AMP, an allosteric inhibitor, which promotes the T-state, disengaged-loop conformation. The titration of various metal-product complexes of the Trp57 mutant with fructose 2,6-bisphosphate (F26P(2)) causes similar decreases in fluorescence, suggesting that F26P(2) and AMP individually induce similar conformational states in FBPase. Fluorescence spectra, however, are sensitive to the type of divalent cation (Zn(2+), Mn(2+), or Mg(2+)) and suggest conformations in addition to the R-state, loop-engaged and T-state, loop-disengaged forms of FBPase. The work presented here demonstrates the utility of fluorescence spectroscopy in probing the conformational dynamics of FBPase.  相似文献   
66.
67.
Type II activin receptors (ActRII and ActRIIB) are single-transmembrane domain serine/threonine kinase receptors that bind activin to initiate the signaling and cellular responses triggered by this hormone. Inhibin also binds type II activin receptors and antagonizes many activin effects. Here we describe alanine scanning mutagenesis of the ActRII extracellular domain. We identify a cluster of three hydrophobic residues (Phe(42), Trp(60), and Phe(83)) that, when individually mutated to alanine in the context of the full-length receptor, cause the disruption of activin and inhibin binding to ActRII. Each of the alanine-substituted ActRII mutants retaining activin binding maintains the ability to form cross-linked complexes with activin and supports activin cross-linking to the type I activin receptor ALK4. Unlike wild-type ActRII, the three mutants unable to bind activin do not cause an increase in activin signaling when transiently expressed in a corticotroph cell line. Together, our results implicate these residues in forming a critical binding surface on ActRII required for functional interactions with both activin and inhibin. This first identification of a transforming growth factor-beta family member binding site may provide a general basis for characterizing binding sites for other members of the superfamily.  相似文献   
68.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   
69.
70.
Summary To isolate a novel gene that contains an SH2 domain, we devised a rapid and nonradioactive cDNA library screening method using polymerase chain reaction (PCR). For PCR amplification, we designed degenerate oligonucleotide primers from the multialigned DNA sequences of SH2 domains. This method offers an inexpensive and efficient approach for the isolation of clones of interest from cDNA libraries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号