首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13623篇
  免费   1439篇
  国内免费   2288篇
  2024年   32篇
  2023年   245篇
  2022年   419篇
  2021年   702篇
  2020年   512篇
  2019年   722篇
  2018年   651篇
  2017年   533篇
  2016年   669篇
  2015年   927篇
  2014年   1111篇
  2013年   1153篇
  2012年   1371篇
  2011年   1250篇
  2010年   816篇
  2009年   740篇
  2008年   848篇
  2007年   748篇
  2006年   670篇
  2005年   569篇
  2004年   486篇
  2003年   412篇
  2002年   368篇
  2001年   230篇
  2000年   187篇
  1999年   162篇
  1998年   121篇
  1997年   97篇
  1996年   75篇
  1995年   45篇
  1994年   53篇
  1993年   33篇
  1992年   48篇
  1991年   43篇
  1990年   52篇
  1989年   33篇
  1988年   20篇
  1987年   18篇
  1986年   30篇
  1985年   16篇
  1984年   17篇
  1983年   20篇
  1982年   12篇
  1981年   13篇
  1980年   7篇
  1979年   17篇
  1978年   6篇
  1977年   9篇
  1976年   9篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
941.
Transdermal insulin delivery using lipid enhanced electroporation   总被引:10,自引:0,他引:10  
Transdermal insulin transport by electroporation was measured using porcine epidermis and fluorescein-labeled insulin. Previous studies have shown that anionic lipids can enhance the electroporative transport of molecules up to 10 kDa in size. It was also shown that it is the charge and not the type of the phospholipid head group that influences transdermal transport under electroporation. Moreover, phospholipids with saturated acyl chains enhance the transport of larger molecules more as compared to those with unsaturated chains. In the current study, based on those earlier findings, the effect of 1,2-dimyristoyl-3-phosphatidylserine (DMPS) on the transdermal transport of insulin by electroporation was examined. Porcine epidermis was used as a model for skin. Transport was measured using glass vertical diffusion apparatus in which the epidermis separated the donor and receiver compartments. Negative pulses were applied across the epidermis using platinum electrodes. Results show that when electroporation was carried out in the presence of DMPS, there was greater than 20-fold enhancement of insulin transport. Furthermore, while in the presence of the phospholipid, almost all the transported insulin was detected in the receiver compartment; in the absence of added lipids, only about half the insulin transported was in the receiver compartment and an almost equal amount of insulin remained in the epidermis. Fluorescence microscopy revealed that the insulin transport was mainly through the lipid multilayer regions that surround the corneocytes.  相似文献   
942.
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type II PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum, and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.  相似文献   
943.
Novel functional role of CA repeats and hnRNP L in RNA stability   总被引:6,自引:1,他引:5  
CA dinucleotide repeat sequences are very common in the human genome. We have recently demonstrated that the polymorphic CA repeats in intron 13 of the human endothelial nitric oxide synthase (eNOS) gene function as an unusual, length-dependent splicing enhancer. The CA repeat enhancer requires for its activity specific binding of hnRNP L. Here we show that in the absence of bound hnRNP L, the pre-mRNA is cleaved directly upstream of the CA repeats. The addition of recombinant hnRNP L restores RNA stability. CA repeats are both necessary and sufficient for this specific cleavage in the 5' adjacent RNA sequence. We conclude that-in addition to its role as a splicing activator-hnRNP L can act in vitro as a sequence-specific RNA protection factor. Based on the wide abundance of CA repetitive sequences in the human genome, this may represent a novel, generally important role of this abundant hnRNP protein.  相似文献   
944.
The diversity and evolution of bitter taste perception in mammals is not well understood. Recent discoveries of bitter taste receptor (T2R) genes provide an opportunity for a genetic approach to this question. We here report the identification of 10 and 30 putative T2R genes from the draft human and mouse genome sequences, respectively, in addition to the 23 and 6 previously known T2R genes from the two species. A phylogenetic analysis of the T2R genes suggests that they can be classified into three main groups, which are designated A, B, and C. Interestingly, while the one-to-one gene orthology between the human and mouse is common to group B and C genes, group A genes show a pattern of species- or lineage-specific duplication. It is possible that group B and C genes are necessary for detecting bitter tastants common to both humans and mice, whereas group A genes are used for species-specific bitter tastants. The analysis also reveals that phylogenetically closely related T2R genes are close in their chromosomal locations, demonstrating tandem gene duplication as the primary source of new T2Rs. For closely related paralogous genes, a rate of nonsynonymous nucleotide substitution significantly higher than the rate of synonymous substitution was observed in the extracellular regions of T2Rs, which are presumably involved in tastant-binding. This suggests the role of positive selection in the diversification of newly duplicated T2R genes. Because many natural poisonous substances are bitter, we conjecture that the mammalian T2R genes are under diversifying selection for the ability to recognize a diverse array of poisons that the organisms may encounter in exploring new habitats and diets.  相似文献   
945.
Estrogens have important physiological roles in the cardiovascular system. We use DNA microarray technology to study the molecular mechanism of estrogen action in the heart and to identify novel estrogen-regulated genes. In this investigation we identify genes that are regulated by chronic estrogen treatment of mouse heart. We present our detailed characterization of one of these genes, lipocalin-type prostaglandin D synthase (L-PGDS). Northern and Western blot analysis revealed that L-PGDS was induced both by acute and chronic estrogen treatment. Northern blot analysis, using estrogen receptor (ER)-disrupted mice, suggests that L-PGDS is specifically induced by ERbeta in vivo. In further support of ERbeta-selective regulation, we identify a functional estrogen-responsive element in the L-PGDS promoter, the activity of which is up-regulated by ERbeta, but not by ERalpha. We demonstrate that a one-nucleotide change (A to C) in the L-PGDS estrogen-responsive element affects receptor selectivity.  相似文献   
946.
Phosphatidylinositol 4 phosphate [PI(4)P] is essential for secretion in yeast, but its role in mammalian cells is unclear. Current paradigms propose that PI(4)P acts primarily as a precursor to phosphatidylinositol 4,5 bisphosphate (PIP2), an important plasma membrane regulator. We found that PI(4)P is enriched in the mammalian Golgi, and used RNA interference (RNAi) of PI4KIIalpha, a Golgi resident phosphatidylinositol 4 kinase, to determine whether PI(4)P directly regulates the Golgi. PI4KIIalpha RNAi decreases Golgi PI(4)P, blocks the recruitment of clathrin adaptor AP-1 complexes to the Golgi, and inhibits AP-1-dependent functions. This AP-1 binding defect is rescued by adding back PI(4)P. In addition, purified AP-1 binds PI(4)P, and anti-PI(4)P inhibits the in vitro recruitment of cytosolic AP-1 to normal cellular membranes. We propose that PI4KIIalpha establishes the Golgi's unique lipid-defined organelle identity by generating PI(4)P-rich domains that specify the docking of the AP-1 coat machinery.  相似文献   
947.
Chen Y  Li D  Lu W  Xing J  Hui B  Han Y 《Biotechnology letters》2003,25(7):527-529
Haematococcus pluvialis was mutated by UV or ethyl methanesulphonate. Mutants resistant to nicotine, diphenylamine, fluridone or norflurazon were then selected. Several nicotine-resistant mutants showed increased (1.9% to 2.5% vs. 1.2% w/w) astaxanthin production. Mutants maintained high astaxanthin production over 4 months of repeated culture.  相似文献   
948.
Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.  相似文献   
949.
To prepare near-infrared fluorescence imaging and photodynamic therapy agents targeted at glucose transporters, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L glioma rat model. Fluorescence imaging studies demonstrate that Pyro-2DG is selectively accumulated in the tumor. Upon its photoactivation, we demonstrate that this agent efficiently causes selective mitochondrial damage to the region of a tumor that was photoirradiated after administration of this agent, but does not affect tissues photoirradiated in the absence of the agent or tissues treated with the agent that are not photoirradiated. Preliminary confocal microscopy studies suggest that Pyro-2DG is delivered and trapped in tumor cells via the GLUT/hexokinase pathway and therefore is useful both as a tumor-targeted NIR fluorescence imaging probe and as a PDT agent for the destruction of cancer.  相似文献   
950.
High-throughput structural biology is a focus of a number of academic and pharmaceutical laboratories around the world. The use of X-ray crystallography in these efforts is critically dependent on high-throughput protein crystallization. The application of current protocols yields crystal leads for approximately 30% of the input proteins and well-diffracting crystals for a smaller fraction. Increasing the success rate will require a multidisciplinary approach that must invoke techniques from molecular biology, protein biochemistry, biophysics, artificial intelligence, and automation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号