首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8175篇
  免费   534篇
  国内免费   4篇
  8713篇
  2024年   9篇
  2023年   23篇
  2022年   105篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   156篇
  2016年   226篇
  2015年   430篇
  2014年   433篇
  2013年   514篇
  2012年   726篇
  2011年   626篇
  2010年   399篇
  2009年   369篇
  2008年   484篇
  2007年   510篇
  2006年   456篇
  2005年   393篇
  2004年   384篇
  2003年   325篇
  2002年   286篇
  2001年   249篇
  2000年   230篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8713条查询结果,搜索用时 15 毫秒
901.
902.
Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols.  相似文献   
903.
Previous studies show that low temperature strongly induces suberin layers in the roots of chilling-sensitive cucumber plants, while in contrast, low temperature produces a much weaker induction of suberin layers in the roots of the chilling-tolerant figleaf gourd [S.H. Lee, G.C. Chung, S. Steudle, Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and -tolerant figleaf gourd, J. Exp. Bot. 56 (2005) 985-995; S.H. Lee, G.C. Chung, E. Steudle, Low temperature and mechanical stresses differently gate aquaporins of root cortical cells of chilling-sensitive cucumber and figleaf gourd, Plant Cell Environ. (2005) in press; S.J. Ahn, Y.J. Im, G.C. Chung, B.H. Cho, S.R. Suh, Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature, Scientia Hort. 81 (1999) 397-408]. Here, the effect of low temperature on fatty acid unsaturation and lipoxygenase activity was examined in cucumber and figleaf gourd. The double bond index demonstrated that membrane lipid unsaturation shows hyperbolic saturation curve in figleaf gourd roots while a biphasic response in cucumber roots to low temperature. In figleaf gourd, the hyperbolic response in the double bond index was primarily due to accumulation of linolenic acid. Chilling stress also significantly induced lipoxygenase activity in figleaf gourd roots. These results suggest that the degree of unsaturation of root plasma membrane lipids correlates positively with chilling-tolerance. Therefore, studies that compare the effects of chilling on cucumber and figleaf gourd may provide broad insight into stress response mechanisms in chilling-sensitive and chilling-tolerant plants. Furthermore, these studies may provide important information regarding the relationship between lipid unsaturation and lipoxygenase function/activity, and between lipoxygenase activity and water channeling during the response to chilling stress. The possible roles of these processes in chilling tolerance are discussed.  相似文献   
904.
The complex gene regulatory networks governed by growth factor signaling are still poorly understood. In order to accelerate the rate of progress in uncovering these networks, we explored the usefulness of interspecies sequence comparison (phylogenetic footprinting) to identify conserved growth factor response elements. The promoter regions of two direct target genes of Bone Morphogenetic Protein (BMP) signaling in Xenopus, Xvent2 and XId3, were compared with the corresponding human and/or mouse counterparts to identify conserved sequences. A comparison between the Xenopus and human Vent2 promoter sequences revealed a highly conserved 21 bp sequence that overlaps the previously reported Xvent2 BMP response element (BRE). Reporter gene assays using Xenopus animal pole ectodermal explants (animal caps) revealed that this conserved 21 bp BRE is both necessary and sufficient for BMP responsiveness. We combine the same phylogenetic footprinting approach with luciferase assays to identify a highly conserved 49 bp BMP responsive region in the Xenopus Id3 promoter. GFP reporters containing multimers of either the Xvent2 or XId3 BREs appear to recapitulate endogenous BMP signaling activity in transgenic Xenopus embryos. Comparison of the Xvent2 and the XId3 BRE revealed core sequence features that are both necessary and sufficient for BMP responsiveness: a Smad binding element (SBE) and a GC-rich element resembling an OAZ binding site. Based on these findings, we have implemented genome scanning to identify over 100 additional putative target genes containing 2 or more BRE-like sequences which are conserved between human and mouse. RT-PCR and in situ analyses revealed that this in silico approach can effectively be used to identify potential BMP target genes.  相似文献   
905.
Bcl-2 stimulates mutagenesis after the exposure of cells to DNA-damaging agents. However, the biological mechanisms of Bcl-2-mediated mutagenesis have remained largely obscure. Here we demonstrate that the Bcl-2-mediated suppression of hMSH2 expression results in a reduced cellular capacity to repair mismatches. The pathway linking Bcl-2 expression to the suppression of mismatch repair (MMR) activity involves the hypophosphorylation of pRb, and then the enhancement of the E2F-pRb complex. This is followed by a decrease in hMSH2 expression. MMR has a key role in protection against deleterious mutation accumulation and in maintaining genomic stability. Therefore, the decreased MMR activity by Bcl-2 may be an underlying mechanism for Bcl-2-promoted oncogenesis.  相似文献   
906.

Background

Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.

Methods

Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.

Results

Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.

Conclusion

These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.  相似文献   
907.
The prevalence of domain-swapping in nature is a manifestation of the principle of minimal frustration in that the interactions designed by evolution to stabilize the protein are also involved in this mode of binding. We previously demonstrated that the Symmetrized-Go potential accurately predicts the experimentally observed domain-swapped structure of Eps8 based solely on the structure of the monomer. There can be, however, multiple modes of domain-swapping, reflecting a higher level of frustration, which is a consequence of symmetry. The human prion and cyanovirin-N are too frustrated to form unique domain-swapped structures on the basis of the Symmetrized-Go potential. However, supplementing the completely symmetric model with intermolecular and intramolecular disulfide bonds in the prion and cyanovirin-N proteins, respectively, yielded unique domain-swapped structures with a remarkable similarity to the experimentally observed ones. These results suggest that the disulfide bonds may sometimes be critical in overcoming the intrinsic frustration of the symmetrized energy landscapes for domain-swapping. We also discuss the implications of intermolecular disulfide bonds in the formation of mammalian prion aggregates.  相似文献   
908.
When adding beta-glycerophosphate (beta-GP), a weak base, to chitosan aqueous solutions, the polymer remains in solution at neutral pH and room temperature, while homogeneous gelation of this system can be triggered upon heating. It is therefore one of the rare true physical chitosan hydrogels. In this study, physicochemical and rheological properties of chitosan solutions in the presence of acetic acid and beta-GP were investigated as a function of temperature in order to gain a better understanding of the gelation mechanisms. The gel structure formed at high temperature was only partially thermoreversible upon cooling to 5 degrees C because of the existence of remaining associations, confirmed by the spontaneous recovery of the gel after breakup at low temperature. Increasing temperature had no effect on the pH values of this system, while conductivity (and calculated ionic strength) increased. Values from the pH measurements were used to estimate the degree of protonation of each species as a function of temperature. The decreasing ratio of -NH3+ in chitosan and -OPO(O-)2 in beta-GP suggested reduced chitosan solubility along with a diminution of ionic interactions such as ionic bridging with increasing temperature. On the other hand, the increased ionic strength as a function of temperature, in the presence of beta-GP, enhanced screening of electrostatic repulsion and increased hydrophobic effect, resulting in favorable conditions for gel formation. Therefore, our study suggests that hydrophobic interactions and reduced solubility are the main driving force for chitosan gelation at high temperature in the presence of beta-GP.  相似文献   
909.
An effective therapeutic agent for treatment of bone diseases is expected to exhibit a high affinity to bone. Conjugating proteins to bisphosphonates (BPs), a class of molecules with an exceptional affinity to bone mineral hydroxyapatite (HA), is a feasible means to impart such a bone affinity. Protein-BP conjugates with cleavable linkages, which allow protein release from the mineral, are preferable over conjugates with stable linkages. To this end, 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (thiolBP) was conjugated onto fetuin, a model protein, using N-succinimidyl-3-(2-pyridyldithio)propionate to create disulfide-linked conjugates. Although the fetuin-thiolBP conjugates were stable under aqueous conditions, the disulfide linkage was readily cleaved in the presence of the physiological thiols l-cysteine, dl-homocysteine, and l-glutathione. dl-Homocysteine exhibited the highest cleavage of the disulfide linkage among these thiols. The imparted bone affinity as a result of thiolBP conjugation, as assessed by HA binding in vitro, was eliminated upon cleavage of the disulfide linkage. The cleavage of the conjugates bound to HA was as effective as the conjugate cleavage in solution, and even more so at high concentrations of l-glutathione. In conclusion, disulfide-linked fetuin-thiolBP conjugates exhibited a high affinity to HA, which was readily lost upon cleavage with thiols found in physiological milieu.  相似文献   
910.
The platelet microparticle proteome   总被引:4,自引:0,他引:4  
Platelet-derived microparticles are the most abundant type of microparticle in human blood and contribute to many biologically significant processes. Here, we report the first proteomic analysis of microparticles generated from activated platelets. Using 1D SDS-PAGE and liquid chromatography coupled to a linear ion trap mass spectrometer, the identification of 578 proteins was accomplished using a minimum of 5 MS/MS detections of at least two different peptides for each protein. These microparticles displayed many proteins intrinsic to and well-characterized on platelets. For example, microparticles in these experiments were found to contain membrane surface proteins including GPIIIa, GPIIb, and P-selectin, as well other platelet proteins such as the chemokines CXCL4, CXCL7, and CCL5. In addition, approximately 380 of the proteins identified were not found in two previous studies of the platelet proteome. Since several of the proteins detected here have been previously implicated in microparticle formation and/or pathological function, it is hoped that this study will help fuel future work concerning the possible role of microparticles in various disease states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号