首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8164篇
  免费   529篇
  国内免费   4篇
  8697篇
  2024年   9篇
  2023年   23篇
  2022年   106篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   156篇
  2016年   226篇
  2015年   430篇
  2014年   432篇
  2013年   512篇
  2012年   720篇
  2011年   626篇
  2010年   399篇
  2009年   367篇
  2008年   484篇
  2007年   508篇
  2006年   454篇
  2005年   392篇
  2004年   384篇
  2003年   325篇
  2002年   285篇
  2001年   249篇
  2000年   230篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8697条查询结果,搜索用时 11 毫秒
931.
Nicotiana benthamiana plants were transformed with the movement protein (MP) gene of tobacco mosaic virus (TMV), usingAgrobacterium-mediated transformation. Plants regenerated from the transformed cells accumulated 30-kDa MP and complemented the activity of TMV MP when infected with chimeric TMVs containing defective MR These transgenic plants displayed stunting, pale-green leaves, and starch accumulations, indicating that TMV MP altered the carbon partitioning for leaves involved in TMV cell-to-cell movement.  相似文献   
932.
A growing number of recent studies have demonstrated the substantial impact of the alkyl side chains on the device performance of organic semiconductors. However, detailed investigation of the effect of side‐chain engineering on the blend morphology and performance of ternary organic solar cells (OSCs) has not yet been undertaken. In this study, the performance of ternary OSCs is investigated in a given poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PTB7‐Th:PC71BM) host set by introducing various small molecule donors (SMDs) with different terminal side‐chain lengths. As expected, the performance of binary OSCs with SMDs depends greatly on the side‐chain length. In contrast, it is observed that all SMD‐based ternary OSCs exhibit almost identical and high power‐conversion efficiencies of 12.0–12.2%. This minor performance variation is attributed to good molecular compatibility between the two donor components, as evidenced by in‐depth electrical and morphological investigations. These results highlight that the alloy‐like structure formed due to the high compatibility of the donor molecules has a more significant effect on the overall performance than the side‐chain length, offering a new guideline for pairing donor components for achieving high‐performance ternary OSCs.  相似文献   
933.
934.
P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of MLC20 was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and 10 μM concentration. Contraction of dispersed cells treated with 10 μM ATP was inhibited by nifedipine. However, contraction induced by 0.1 μM ATP, 0.1 μM UTP and 10 μM UTP was decreased by U73122, chelerythrine, ML-9, PTX and GDPβS. Contraction induced by 0.1 μM ATP and UTP was inhibited by Gαi3 or Gαq antibodies and by PLCβ1 or PLCβ3 antibodies. Phosphorylated MLC20 was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to Gαi3 and G q proteins, which activate PLCβ1 and PLCβ3. Subsequently, increased intracellular Ca2+ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased pMLC20 generated esophageal contraction.  相似文献   
935.
SUMMARY: WebCell is a web-based environment for managing quantitative and qualitative information on cellular networks and for interactively exploring their steady-state and dynamic behaviors in response to systemic perturbations. It is designed as a user-friendly web interface, allowing users to efficiently construct, visualize, analyze and store reaction network models, thereby facilitating kinetic modeling and in silico simulation of biological systems of interest. A collected model library is also available to provide comprehensive implications for cellular dynamics of the published models.  相似文献   
936.
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known – e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T‐cell lymphoma/leukaemia virus‐1, as well as some inherited syndromes may raise the risk of ALL – each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.  相似文献   
937.
A series of 7 alpha-aminobisnorsteroids were synthesized and their in vitro antimicrobial activity was evaluated regarding Gram-positive and Gram-negative bacteria. The stereoselective reductive amination of 7-ketosteroid 3 with NH(4)OAc, in the presence of NaBH(3)CN, afforded a high yield of 7 alpha-aminosteroid 4. The 3,7-diaminobisnorsteroids were obtained by the reductive amination of 4 with NH(4)OT(f), Boc-spermidine, and Boc-spermine. 3 alpha,7 alpha-Diaminobisnorsterol dihydrochloride 15 showed the highest antimicrobial activity against Streptococcus pyogenes 308 A with a MIC value of 1.6 microg/mL. Hemolytic activities of the compounds 13-20 were determined. Compound 13 showed MHC value at 100 microg/mL.  相似文献   
938.
Acinetobacter baumannii outer membrane protein A (AbOmpA) is a potential virulence factor that induces host cell death. Based on previous findings that AbOmpA translocated into the nuclei of host cells, the cell-death mechanism of AbOmpA through the nuclear targeting was investigated. Acinetobacter baumannii secreted AbOmpA in in vitro culture. The recombinant AbOmpA (rAbOmpA) was internalized by the host cells. The intracellular rAbOmpA was degraded into several forms of subfragments in the cytosol and then two subfragments of rAbOmpA translocated into the nuclei. The rAbOmpA exhibited the divalent cation-dependent endonuclease activity. In an in vivo assay with microinjection of rAbOmpA into the nucleus of fertilized Xenopus laevis eggs, rAbOmpA degraded chromosomal DNA with the characteristic DNA ladders and induced degeneration of the embryos. These results suggest that AbOmpA translocates into the nuclei of host cells and degrades chromosomal DNA by DNAse I-like enzymatic activity, which is a new pathogenic strategy of A. baumannii.  相似文献   
939.
940.

Objectives

We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity.

Methods and Results

After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells.

Conclusions

Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号