首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8149篇
  免费   539篇
  国内免费   4篇
  2023年   18篇
  2022年   74篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   156篇
  2016年   228篇
  2015年   432篇
  2014年   432篇
  2013年   514篇
  2012年   722篇
  2011年   626篇
  2010年   399篇
  2009年   366篇
  2008年   485篇
  2007年   513篇
  2006年   454篇
  2005年   392篇
  2004年   386篇
  2003年   325篇
  2002年   285篇
  2001年   250篇
  2000年   230篇
  1999年   166篇
  1998年   64篇
  1997年   57篇
  1996年   38篇
  1995年   35篇
  1994年   21篇
  1993年   22篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   36篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1982年   7篇
  1981年   10篇
  1979年   11篇
  1978年   13篇
  1977年   13篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8692条查询结果,搜索用时 15 毫秒
101.
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.  相似文献   
102.
The lymphatic vascular system plays an important role in tissue fluid homeostasis. Lymphedema is a chronic, progressive, and incurable condition that leads to lymphatic fluid retention; it may be primary (heritable) or secondary (acquired) in nature. Although there is a growing understanding of lymphedema, methods for the prevention and treatment of lymphedema are still limited. In this study, we investigated differential protein expressions in sham‐operated and lymphedema‐operated mice for 3 days, using two‐dimensional gel electrophoresis (2‐DE) and mass spectrometry analysis. Male improved methodology for culturing noninbred (ICR) mice developed lymphedema in the right hindlimb. Twenty functional proteins were found to be differentially expressed between lymphedema induced‐right leg tissue and normal left leg tissue. Out of these proteins, the protein levels of apolipoprotein A‐1 preprotein, alpha‐actinin‐3, mCG21744, parkinson disease, serum amyloid P‐component precursor, annexin A8, mKIAA0098 protein, and fibrinogen beta chain precursor were differentially upregulated in the lymphedema mice compared with the sham‐operated group. Western blotting analysis was used to validate the proteomics results. Our results showing differential up‐regulation of serum amyloid P‐component precursor, parkinson disease, and apolipoprotein A‐1 preprotein in lymphedema model over sham‐operated model suggest important insights into pathophysiological target for lymphedema. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
103.
104.
Isoflavonoids (daidzein, genistein, and coumestrol) are involved in induction of nod genes in Bradyrhizobium japonicum and may be involved in nodule development as well. Abscisic acid (ABA) may also impact nodulation since ABA is reportedly involved in isoflavonoid synthesis. The current study was conducted to evaluate whether ABA plays a role in differential nodulation of a hypernodulated soybean (Glycine max L. Merr.) mutant and the Williams parent. Exogenous ABA application resulted in a decrease in nodule number and weight in both lines. Isoflavonoid concentrations were also markedly decreased in response to ABA application in both inoculated and noninoculated soybean roots. The inoculation treatment itself resulted in a marked increase in isoflavonoid concentrations of NOD1-3, regardless of ABA levels, while only slight increases occurred in Williams. The nodule numbers of both soybean lines across several ABA concentration treatments were highly correlated with the concentration of all three isoflavonoids. However, differences in internal levels of ABA between lines were not detected when grown in the absence of external ABA additions. It is concluded that differential nodule expression between the wild type and the hypernodulated mutant is not likely due to differential ABA synthesis.  相似文献   
105.
106.
Injection of thrombin into the middle cerebral artery (MCA) of mice has been proposed as a new model of thromboembolic stroke. The present study used sequential multiparametric Magnetic Resonance Imaging (MRI), including Magnetic Resonance Angiography (MRA), Diffusion-Weighted Imaging (DWI) and Perfusion-Weighted Imaging (PWI), to document MCA occlusion, PWI-DWI mismatch, and lesion development. In the first experiment, complete MCA occlusion and reproducible hypoperfusion were obtained in 85% of animals during the first hour after stroke onset. In the second experiment, 80% of animals showed partial to complete reperfusion during a three-hour follow-up. Spontaneous reperfusion thus contributed to the variability in ischemic volume in this model. The study confirmed the value of the model for evaluating new thrombolytic treatments, but calls for extended MRI follow-up at the acute stage in therapeutic studies.  相似文献   
107.
108.
The influenza virus is one of the major public health threats. However, the development of efficient vaccines and therapeutic drugs to combat this virus is greatly limited by its frequent genetic mutations. Because of this, targeting the host factors required for influenza virus replication may be a more effective strategy for inhibiting a broader spectrum of variants. Here, we demonstrated that inhibition of a motor protein kinesin family member 18A (KIF18A) suppresses the replication of the influenza A virus (IAV). The expression of KIF18A in host cells was increased following IAV infection. Intriguingly, treatment with the selective and ATP-competitive mitotic kinesin KIF18A inhibitor BTB-1 substantially decreased the expression of viral RNAs and proteins, and the production of infectious viral particles, while overexpression of KIF18A enhanced the replication of IAV. Importantly, BTB-1 treatment attenuated the activation of AKT, p38 MAPK, SAPK and Ran-binding protein 3 (RanBP3), which led to the prevention of the nuclear export of viral ribonucleoprotein complexes. Notably, administration of BTB-1 greatly improved the viability of IAV-infected mice. Collectively, our results unveiled a beneficial role of KIF18A in IAV replication, and thus, KIF18A could be a potential therapeutic target for the control of IAV infection.  相似文献   
109.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
110.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号