首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   97篇
  2023年   6篇
  2022年   19篇
  2021年   33篇
  2020年   11篇
  2019年   21篇
  2018年   15篇
  2017年   16篇
  2016年   19篇
  2015年   33篇
  2014年   38篇
  2013年   45篇
  2012年   50篇
  2011年   41篇
  2010年   23篇
  2009年   25篇
  2008年   31篇
  2007年   36篇
  2006年   31篇
  2005年   24篇
  2004年   15篇
  2003年   16篇
  2002年   19篇
  2001年   18篇
  2000年   9篇
  1999年   9篇
  1997年   5篇
  1996年   6篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   13篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   10篇
  1983年   11篇
  1982年   10篇
  1981年   3篇
  1979年   5篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1966年   2篇
  1965年   2篇
  1930年   2篇
排序方式: 共有773条查询结果,搜索用时 31 毫秒
151.
Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 × 104 g of soil-1 for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha-1 in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P ≤ 0.05). On average, inoculation increased yield by 62%. Soybean (G. max) responded to inoculation most frequently, while cowpea (V. unguiculata) failed to respond in all trials. Inoculation responses in the other legumes were site dependent. The response to inoculation and the competitive success of inoculant rhizobia were inversely related to numbers of indigenous rhizobia. As few as 50 rhizobia g of soil-1 eliminated inoculation response. When fewer than 10 indigenous rhizobia g of soil-1 were present, economic yield was significantly increased 85% of the time. Yield was significantly increased in only 6% of the observations when numbers of indigenous rhizobia were greater than 10 cells g of soil-1. A significant response to N application, significant increases in nodule parameters, and greater than 50% nodule occupancy by inoculant rhizobia did not necessarily coincide with significant inoculation responses. No less than a doubling of nodule mass and 66% nodule occupancy by inoculant rhizobia were required to significantly increase the yield of inoculated crops over that of uninoculated crops. However, lack of an inoculation response was common even when inoculum strains occupied the majority of nodules. In these trials, the symbiotic yield of crops was, on average, only 88% of the maximum yield potential, as defined by the fertilizer N treatment. The difference between the yield of N-fertilized crops and that of N2-fixing crops indicates a potential for improving inoculation technology, the N2 fixation capacity of rhizobial strains, and the efficiency of symbiosis. In this study, we show that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia.  相似文献   
152.
The ability to predict the symbiotic performance of rhizobia introduced into different environments would allow for a more judicious use of rhizobial inoculants. Data from eight standardized field inoculation trials were used to develop models that could be used to predict the success of rhizobial inoculation in diverse environments based on indices of the size of indigenous rhizobial populations and the availability of mineral N. Inoculation trials were conducted at five diverse sites on the island of Maui, Hawaii, with two to four legumes from among nine species, yielding 29 legume-site observations. The sizes of indigenous rhizobial populations were determined at planting. Soil N mineralization potential, total soil N, N accumulation and seed yield of nonnodulating soybean, and N derived from N2 fixation in inoculated soybean served as indices of available soil N. Uninoculated, inoculated, and fertilizer N treatments evaluated the impact of indigenous rhizobial populations and soil N availability on inoculation response and crop yield potential. The ability of several mathematical models to describe the inverse relationship between numbers of indigenous rhizobia and legume inoculation responses was evaluated. Power, exponential, and hyperbolic functions yielded similar results; however, the hyperbolic equation provided the best fit of observed to estimated inoculation responses (r2 = 0.59). The fact that 59% of the observed variation in inoculation responses could be accounted for by the relationship of inoculation responses to numbers of indigenous rhizobia illustrates the profound influence that the size of soil rhizobial populations has on the successful use of rhizobial inoculants. In the absence of indigenous rhizobia, the inoculation response was directly proportional to the availability of mineral N. Therefore, the hyperbolic response function was subsequently combined with several indices of soil N availability to generate models for predicting legume inoculation response. Among the models developed, those using either soil N mineralization potential or N derived from N2 fixation in soybean to express the availability of mineral N were most useful in predicting the success of legume inoculation. Correlation coefficients between observed and estimated inoculation responses were r = 0.83 for the model incorporating soil N mineralization potential and r = 0.96 for the model incorporating N derived from N2 fixation. Several equations collectively termed “soil N deficit factors” were also found to be useful in estimating inoculation responses. In general, models using postharvest indices of soil N were better estimators of observed inoculation responses than were those using laboratory measures of soil N availability. However, the latter, while providing less precise estimates, are more versatile because all input variables can be obtained through soil analysis prior to planting. These models should provide researchers, as well as regional planners, with a more precise predictive capability to determine the inoculation requirements of legumes grown in diverse environments.  相似文献   
153.
In spiders, sex pheromones are often associated with silk produced by females, and function in mate attraction, recognition, and evaluation. Silk-bound pheromones typically elicit courtship behaviour in web-building spiders. Here we (1) describe courtship interactions of Steatoda grossa males with virgin or mated females, and (2) show that silk and methanol extracts of silk produced by virgin females trigger courtship behaviour (silk production) by males, whereas silk of mated females does not. Our results indicate that (1) virgin females produce a silk-bound sex pheromone, (2) males discriminate between virgin and mated females based on silk cues, and (3) male silk likely functions in sexual communication.  相似文献   
154.
Due to their extensive growth potential, transgenic root systems arising from inoculation withAgrobacterium rhizogenes became popular in the last decade as model systems in domains as diverse as production of secondary metabolites, interactions with pathogens and symbionts, examination of gene importance in control of root development or in regulation of gene expression in roots. Wild-type bacterial strains have also been considered as useful tools to stimulate rooting on recalcitrant cuttings or microcuttings as they cause abundant root initiation at the site of inoculation.Root initiation and the in vitro growth characteristics of transformed roots result from the transfer of genes located on the root-inducing plasmid (Ri) to plant cells and their expression therein. Two sets of pRi genes are involved in the root induction process: therol (rootloci) genes located in the TL region and theaux genes of the TR region. Some of these genes being able to interact, the system appears also as a new tool to study the role of auxin in the process of root initiation. The distinctive phenotype of the transformed roots which are capable of hormone autonomous growth seems to be controlled mainly by therol genes. Theserol genes, i.e. the geneticloci rol A, rol B, rol C androl D correspond to open reading frames ORFs 10, 11, 12 and 15. In vitro experiments determined the functions of the Rol B and Rol C proteins but the functions of Rol A and Rol D are still unknown. Altered metabolism of developmental regulators or modified sensitivity to auxin have been suspected to mediate root induction and morphological abnormalities of transformed roots and plants.The target cells for transformation and the cells which are competent for root initiation will be characterized as well as the subsequent development of transgenic roots provided with various constructs from the whole T-DNA to singlerol genes. Results dealing with auxin contents in relation with root growth kinetics, phenotype and structure, will also be presented and discussed with the potential use of therol genes to control root biomass. F J de Bruijn Section editor  相似文献   
155.
Summary Three strains ofSaccharomyces cerevisiae and one strain of aCandida sp. obtained from different industrial sources were screened for uptake of silver and copper. Considerable differences in metal uptake capacities were found between the different strains ofS. cerevisiae and betweenS. cerevisiae and theCandida sp. used. Copper uptake capacities ranged from 0.05 mmol g–1 dry wt to 0.184 mmol g–1 dry wt while values of 0.034 mmol Ag g–1 dry wt and 0.193 mmol Ag g–1 dry wt biomass were observed. Use of ion-selective electrodes (ISEs) enabled the detection of copper complexing agents (possibly proteins and carbohydrates) released by yeasts into the surrounding medium. In contrast, these compounds had no silver complexation abilities. Langmuir and Scatchard transformations of metal adsorption isotherms suggested differences in the mechanisms involved in metal uptake by the various yeasts. The differences between strains ofS. cerevisiae were due possibly to differences in cell wal composition. Different methods of preparation of biomass (fresh, air, oven and freeze-dried) had little effect on metal uptake in comparison with fresh biomass. Storage of fresh waste biomass at 4°C for 20 days had no effect on metal biosorption capacities. It was also observed that individual batches of waste biomass produced from different fermentation runs had consistent metal uptake capacities. The implications of the above results on the use of waste yeast biomass for treatment of metal-containing effluents are discussed.  相似文献   
156.
157.
Lamin B1 and lamin B2 are essential building blocks of the nuclear lamina, a filamentous meshwork lining the nucleoplasmic side of the inner nuclear membrane. Deficiencies in lamin B1 and lamin B2 impair neurodevelopment, but distinct functions for the two proteins in the development and homeostasis of the CNS have been elusive. Here we show that embryonic depletion of lamin B1 in retinal progenitors and postmitotic neurons affects nuclear integrity, leads to the collapse of the laminB2 meshwork, impairs neuronal survival, and markedly reduces the cellularity of adult retinas. In stark contrast, a deficiency of lamin B2 in the embryonic retina has no obvious effect on lamin B1 localization or nuclear integrity in embryonic retinas, suggesting that lamin B1, but not lamin B2, is strictly required for nucleokinesis during embryonic neurogenesis. However, the absence of lamin B2 prevents proper lamination of adult retinal neurons, impairs synaptogenesis, and reduces cone photoreceptor survival. We also show that lamin B1 and lamin B2 are extremely long-lived proteins in rod and cone photoreceptors. OF interest, a complete absence of both proteins during postnatal life has little or no effect on the survival and function of cone photoreceptors.  相似文献   
158.
A plague of mice ( Mus domesticus ) in the Victorian mallee wheatlands of south-eastern Australia in autumn 1984 appeared to be generated by a sequence of rainfall events: high autumn (March), mid winter and late winter rainfall in 1983, and high summer rainfall in 1983/84. The March rainfall in 1983 ended a drought; mice began to breed and bred until the end of May. Relatively high survival of mice for 12 months after March 1983, together with early onset of breeding and high reproductive performance throughout the 1983/84 breeding season, including summer, were key demographic processes during the formation of the plague. Temporal differences in mouse abundance and breeding performance between habitats highlighted the relevance of specific habitats to the dynamics of mouse populations in the wheatlands. Fencelines were the most important habitat of mice because they were foci for breeding at the start of the breeding season, good nesting sites which were rarely disturbed, and widespread and in close proximity to crops. Cereal crops were colonized in spring 1983 and in autumn 1984; they became important habitats in 1983 when mice dispersed and bred there in early spring. Redhead's (1988) model was sufficient to explain the 1984 plague, but not the magnitude of the decline of mouse numbers in 1984, nor the absence of a further outbreak in 1985. A new model is proposed based on a sequence of rainfall events beginning at least 10 months prior to a plague.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号