首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   23篇
  2023年   6篇
  2022年   2篇
  2021年   7篇
  2020年   9篇
  2019年   3篇
  2018年   14篇
  2017年   6篇
  2016年   12篇
  2015年   13篇
  2014年   24篇
  2013年   23篇
  2012年   23篇
  2011年   16篇
  2010年   8篇
  2009年   10篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  1976年   1篇
排序方式: 共有220条查询结果,搜索用时 171 毫秒
41.

Background

Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3.

Results

We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1.

Conclusions

This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1085) contains supplementary material, which is available to authorized users.  相似文献   
42.
We analyze two large datasets from technological networks with location and social data: user location records from an online location-based social networking service, and anonymized telecommunications data from a European cellphone operator, in order to investigate the differences between individual and group behavior with respect to physical location. We discover agreements between the two datasets: firstly, that individuals are more likely to meet with one friend at a place they have not visited before, but tend to meet at familiar locations when with a larger group. We also find that groups of individuals are more likely to meet at places that their other friends have visited, and that the type of a place strongly affects the propensity for groups to meet there. These differences between group and solo mobility has potential technological applications, for example, in venue recommendation in location-based social networks.  相似文献   
43.

Background

Protein HMGB1, an abundant nuclear non-histone protein that interacts with DNA and has an architectural function in chromatin, was strikingly shown some years ago to also possess an extracellular function as an alarmin and a mediator of inflammation. This extracellular function has since been actively studied, both from a fundamental point of view and in relation to the involvement of HMGB1 in inflammatory diseases. A prerequisite for such studies is the ability to detect HMGB1 in blood or other biological fluids and to accurately measure its concentration.

Methodology/Principal Findings

In addition to classical techniques (western blot, ELISA) that make use of specific anti-HMGB1 antibodies, we present here a new, extremely sensitive technique that is based on the fact that hemicatenated DNA loops (hcDNA) bind HMGB1 with extremely high affinity, higher than the affinity of specific antibodies, similar in that respect to DNA aptamers. DNA-protein complexes formed between HMGB1 and radiolabeled hcDNA are analyzed by electrophoresis on nondenaturing polyacrylamide gels using the band-shift assay method. In addition, using a simple and fast protocol to purify HMGB1 on the basis of its solubility in perchloric acid allowed us to increase the sensitivity by suppressing any nonspecific background. The technique can reliably detect HMGB1 at a concentration of 1 pg per microliter in complex fluids such as serum, and at much lower concentrations in less complex samples. It compares favorably with ELISA in terms of sensitivity and background, and is less prone to interference from masking proteins in serum.

Conclusion

The new technique, which illustrates the potential of DNA nanoobjects and aptamers to form high-affinity complexes with selected proteins, should provide a valuable tool to further investigate the extracellular functions of HMGB1 and its involvement in inflammatory pathologies.  相似文献   
44.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   
45.
In renal transplantation, the unresponsiveness of patients undergoing chronic antibody mediated rejection (CAMR) to classical treatment stress on the need for accurate biomarkers to improve its diagnosis. We aim to determine whether microRNA expression patterns may be associated with a diagnosis of CAMR. We performed expression profiling of miRNAs in peripheral blood mononuclear cells (PBMC) of kidney transplant recipients with CAMR or stable graft function. Among 257 expressed miRNAs, 10 miRNAs associated with CAMR were selected. Among them, miR-142-5p was increased in PBMC and biopsies of patients with CAMR as well as in a rodent model of CAMR. The lack of modulation of miR-142-5p in PBMC of patients with renal failure, suggests that its over-expression in CAMR was associated with immunological disorders rather than renal dysfunction. A ROC curve analysis performed on independent samples showed that miR-142-5p is a potential biomarker of CAMR allowing a very good discrimination of the patients with CAMR (AUC = 0.74; p = 0.0056). Moreover, its expression was decreased in PHA-activated blood cells and was not modulated in PBMC from patients with acute rejection, excluding a non-specific T cell activation expression. The absence of modulation of this miRNA in immunosuppressed patients suggests that its expression was not influenced by treatment. Finally, the analysis of miR-142-5p predicted targets under-expressed in CAMR PBMC in a published microarray dataset revealed an enrichment of immune-related genes. Altogether, these data suggest that miR-142-5p could be used as a biomarker in CAMR and these finding may improve our understanding of chronic rejection mechanisms.  相似文献   
46.
47.
48.

Background

The gap junction protein, Connexin32 (Cx32), is expressed in various tissues including liver, exocrine pancreas, gastrointestinal epithelium, and the glia of the central and peripheral nervous system. Gap junction-mediated cell-cell communication and channel-independent processes of Cx32 contribute to the regulation of physiological and cellular activities such as glial differentiation, survival, and proliferation; maintenance of the hepatic epithelium; and axonal myelination. Mutations in Cx32 cause X-linked Charcot–Marie–Tooth disease (CMT1X), an inherited peripheral neuropathy. Several CMT1X causing mutations are found in the cytoplasmic domains of Cx32, a region implicated in the regulation of gap junction assembly, turnover and function. Here we investigate the roles of acetylation and ubiquitination in the C-terminus on Cx32 protein function. Cx32 protein turnover, ubiquitination, and response to deacetylase inhibitors were determined for wild-type and C-terminus lysine mutants using transiently transfected Neuro2A (N2a) cells.

Results

We report here that Cx32 is acetylated in transfected N2a cells and that inhibition of the histone deacetylase, HDAC6, results in an accumulation of Cx32. We identified five lysine acetylation targets in the C-terminus. Mutational analysis demonstrates that these lysines are involved in the regulation of Cx32 ubiquitination and turnover. While these lysines are not required for functional Cx32 mediated cell-cell communication, BrdU incorporation studies demonstrate that their relative acetylation state plays a channel-independent role in Cx32-mediated control of cell proliferation.

Conclusion

Taken together these results highlight the role of post translational modifications and lysines in the C-terminal tail of Cx32 in the fine-tuning of Cx32 protein stability and channel-independent functions.
  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号