首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   65篇
  国内免费   1篇
  2021年   9篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   17篇
  2016年   22篇
  2015年   19篇
  2014年   23篇
  2013年   64篇
  2012年   47篇
  2011年   37篇
  2010年   27篇
  2009年   31篇
  2008年   46篇
  2007年   36篇
  2006年   37篇
  2005年   56篇
  2004年   42篇
  2003年   51篇
  2002年   40篇
  2001年   44篇
  2000年   56篇
  1999年   31篇
  1998年   19篇
  1997年   12篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1993年   13篇
  1992年   28篇
  1991年   19篇
  1990年   33篇
  1989年   23篇
  1988年   25篇
  1987年   18篇
  1986年   20篇
  1985年   28篇
  1984年   24篇
  1983年   19篇
  1982年   16篇
  1981年   8篇
  1979年   11篇
  1978年   8篇
  1977年   13篇
  1975年   10篇
  1974年   17篇
  1973年   8篇
  1972年   11篇
  1970年   8篇
  1967年   10篇
排序方式: 共有1247条查询结果,搜索用时 187 毫秒
101.
Male infertility affects at least 5% of reproductive age males. The most common pathology is a complex presentation of decreased sperm output and abnormal sperm shape and motility referred to as oligoasthenoteratospermia (OAT). For the majority of OAT men a precise diagnosis cannot be provided. Here we demonstrate that leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) is required for multiple aspects of sperm assembly, including acrosome attachment, sperm head shaping and the initiation of the axoneme growth to form the core of the sperm tail. Specifically, LRGUK-1 is required for basal body attachment to the plasma membrane, the appropriate formation of the sub-distal appendages, the extension of axoneme microtubules and for microtubule movement and organisation within the manchette. Manchette dysfunction leads to abnormal sperm head shaping. Several of these functions may be achieved in association with the LRGUK-1 binding partner HOOK2. Collectively, these data establish LRGUK-1 as a major determinant of microtubule structure within the male germ line.  相似文献   
102.

Objectives

The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism.

Background

The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca2+ handling in heart failure remains unclear.

Methods

We investigated the effect of milrinone plus landiolol on intracellular Ca2+ transient (CaT), cell shortening (CS), the frequency of diastolic Ca2+ sparks (CaSF), and sarcoplasmic reticulum Ca2+ concentration ({Ca2+}SR) in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2) and phospholamban (PLB).

Results

In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca2+}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca2+}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808) in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17). Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz) in failing cardiomyocytes.

Conclusion

A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca2+ leak.  相似文献   
103.
UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a significant role in vitamin K2 (MK-4) synthesis. We investigated the enzymological properties of UBIAD1 using microsomal fractions from Sf9 cells expressing UBIAD1 by analysing MK-4 biosynthetic activity. With regard to UBIAD1 enzyme reaction conditions, highest MK-4 synthetic activity was demonstrated under basic conditions at a pH between 8.5 and 9.0, with a DTT ≥0.1 mM. In addition, we found that geranyl pyrophosphate and farnesyl pyrophosphate were also recognized as a side-chain source and served as a substrate for prenylation. Furthermore, lipophilic statins were found to directly inhibit the enzymatic activity of UBIAD1. We analysed the aminoacid sequences homologies across the menA and UbiA families to identify conserved structural features of UBIAD1 proteins and focused on four highly conserved domains. We prepared protein mutants deficient in the four conserved domains to evaluate enzyme activity. Because no enzyme activity was detected in the mutants deficient in the UBIAD1 conserved domains, these four domains were considered to play an essential role in enzymatic activity. We also measured enzyme activities using point mutants of the highly conserved aminoacids in these domains to elucidate their respective functions. We found that the conserved domain I is a substrate recognition site that undergoes a structural change after substrate binding. The conserved domain II is a redox domain site containing a CxxC motif. The conserved domain III is a hinge region important as a catalytic site for the UBIAD1 enzyme. The conserved domain IV is a binding site for Mg2+/isoprenyl side-chain. In this study, we provide a molecular mapping of the enzymological properties of UBIAD1.  相似文献   
104.
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a′ in green sulfur bacteria, BChl g′ in heliobacteria, Chl a′ in Chl a-type PS I, and Chl d′ in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a′)2 and (BChl g′)2 in anoxygenic organisms, or heterodimers, Chl a/a′ and Chl d/d′ in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A 0, are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.  相似文献   
105.
AimPoly(ADP-ribose) polymerase-1 (PARP-1) is a DNA repair enzyme, and its excessive activation, following ischemia, trauma, etc., depletes cellular nicotinamide adenine dinucleotide (NAD+) as a substrate and eventually leads to brain cell death. Nicotinamide, an NAD+ precursor and a PARP-1 inhibitor, is known to prevent PARP-1-triggered cell death, but there is no available information on the mechanisms involved in its transport. Here we clarified the transport characteristics of nicotinamide in primary cultured mouse astrocytes.Main methodsUptake characteristics of [14C]nicotinamide were assessed by a conventional method with primary cultured mouse astrocytes. Cell viability and PARP-1 activity were determined with intracellular LDH activity and immunocytochemical detection of PAR accumulation, respectively.Key findingsPARP-1 activation was induced by treatment of astrocytes with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), an alkylating agent. MNNG-triggered astrocyte death and PAR accumulation were completely inhibited by treatment with nicotinamide as with DPQ (3,4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2H)-isoquinolinone), a second generation PARP inhibitor. The uptake of [14C]nicotinamide was time-, temperature-, concentration- and pH-dependent, and was inhibited and stimulated by co- and pre-treatment with N-methylnicotinamide, a representative substrate of an organic cation transport system, respectively. Co-treatment of astrocytes with nicotinamide and N-methylnicotinamide resulted in a decrease in PAR accumulation and absolute prevention of cell death.SignificanceThese findings suggest that nicotinamide has a protective effect against PARP-1-induced astrocyte death and that its transporter-mediated uptake, which is extracellular pH-sensitive and common to N-methylnicotinamide, is critical for prevention of PARP-1-triggered cell death.  相似文献   
106.
107.
In this study, the preliminary analyses were conducted of enzymatic activities of uridine phosphorylase (UP) and thymidine phosphorylase (TP) in normal tissues and cancer tissues of the uterine cervix. The study was performed on 27 patients of cervical cancer, treated first in our hospital. Normal cervical tissues obtained from 15 patients undergoing hysterectomy for benign diseases were used as controls. The supernatant of the homogenated cervical tissues and the stroma (5-FU and ribose-1-P or deoxyribose-1-P) were analyzed by high performance liquid chromatography, and then the UP and TP activities calculated. TP activity was significantly greater than UP activity (P < 0.0001). Both UP and TP showed significantly greater activity in cancer tissues than in normal tissues (P < 0.0001). In the TP activity of the cancer tissues, there was no significant difference among the histological types, while the TP activity tended to be significantly higher in the cases with lymph node metastasis. These results showed that the TP-mediated route seemed important as the 5FU metabolic pathway in the uterine cervical tissues, and TP enzymatic activity might be associated with lymph node metastasis.  相似文献   
108.
109.
110.
The ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose. Field emission electron microscopy allowed the visualization of a 3D knitted structure with ultrafine microfibrils (approximately 5-20 nm in width) in cellulose from A. bogorensis compared with the 40-100 nm wide microfibrils observed in cellulose isolated from Gluconacetobacter xylinus, suggesting differences in the mechanism of cellulose biosynthesis or organization of cellulose synthesizing sites in these two related bacterial species. Identifying these differences will lead to a better understanding of cellulose biosynthesis in bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号