首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   15篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   9篇
  2009年   11篇
  2008年   6篇
  2007年   11篇
  2006年   10篇
  2005年   4篇
  2004年   18篇
  2003年   6篇
  2002年   12篇
  2001年   10篇
  1999年   3篇
  1998年   3篇
  1995年   5篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1966年   1篇
  1961年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
161.
Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic -glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.  相似文献   
162.
Agrobacterium tumefaciens harbouring the Ti plasmid incites crown gall tumor on dicotyledonous species. Upon infection of these plants, T-DNA in the Ti plasmid is transferred by unknown mechanisms to plant cells to be integrated into nuclear DNA. WhenAgrobacterium is incubated with protoplasts or seedlings of dicotyledonous plants, circulation of T-DNA and expression ofvir (virulence) genes on the Ti plasmid are induced. The circularization event is efficiently induced by mesophyll protoplasts of tobacco which are highly competent for transformation by the T-DNA, and is also induced by diffusible phenolic compounds excreted from the protoplasts. The circularization and formation of crown gall both require the expression of thevirD locus, one of the induciblevir genes. These results suggest that the circularization of T-DNA reflects one of steps of the T-DNA transfer during formation of crown gall. In contrast to dicotyledonous plants, monocotyledonous plants are thought to be unresponsive to infection byAgrobacterium. We showed that monocotyledonous plants do not excrete diffusible inducers for the expression ofvir genes, while they contain a novel type of a signal substance(s). This inducer is not detected in the exudates of seedlings of monocotyledonous plants, but is found in the extracts from the seedlings, and also those from the seeds, bran and germ of wheat and oats. This finding suggests that T-DNA processing, and possibly its transfer, should take place whenAgrobacterium invades seedlings and seeds of monocotyledonous plants. Recipient of the Botanical Society Award for Young Scientists, 1987.  相似文献   
163.
The cellular immune response contributes to viral clearance as well as to liver injury in acute and chronic hepatitis C virus (HCV) infection. An immunodominant determinant frequently recognized by liver-infiltrating and circulating CD8(+) T cells of HCV-infected patients is the HCV(NS3-1073) peptide CVNGVCWTV. Using a sensitive in vitro technique with HCV peptides and multiple cytokines, we were able to expand cytotoxic T cells specific for this determinant not only from the blood of 11 of 20 HCV-infected patients (55%) but also from the blood of 9 of 15 HCV-negative blood donors (60%), while a second HCV NS3 determinant was recognized only by HCV-infected patients and not by seronegative controls. The T-cell response of these healthy blood donors was mediated by memory T cells, which cross-reacted with a novel T-cell determinant of the A/PR/8/34 influenza A virus (IV) that is endogenously processed from the neuraminidase (NA) protein. Both the HCV NS3 and the IV NA peptide displayed a high degree of sequence homology, bound to the HLA-A2 molecule with high affinity, and were recognized by cytotoxic T lymphocytes with similar affinity (10(-8) M). Using the HLA-A2-transgenic mouse model, we then demonstrated directly that HCV-specific T cells could be induced in vivo by IV infection. Splenocytes harvested from IV-infected mice at the peak of the primary response (day 7 effector cells) or following complete recovery (day 21 memory cells) recognized the HCV NS3 peptide, lysed peptide-pulsed target cells, and produced gamma interferon. These results exemplify that host responses to an infectious agent are influenced by cross-reactive memory cells induced by past exposure to heterologous viruses, which could have important consequences for vaccine development.  相似文献   
164.
PriA protein is essential for RecA-dependent DNA replication induced by stalled replication forks in Escherichia coli. PriA is a DEXH-type DNA helicase, ATPase activity of which depends on its binding to structured DNA including a D-loop-like structure. Here, we show that the N-terminal 181-amino acid polypeptide can form a complex with D-loop in gel shift assays and have identified a unique motif present in the N-terminal segment of PriA that plays a role in its DNA binding. We have also identified residues in the C terminus proximal helicase domain essential for D-loop binding. PriA proteins mutated in this domain do not bind to D-loop, despite the presence of the N-terminal DNA-binding motif. Those mutants that cannot bind to D-loop in vitro do not support a recombination-dependent mode of DNA replication in vivo, indicating that binding to a D-loop-like structure is essential for the ability of PriA to initiate DNA replication and repair from stalled replication forks. We propose that binding of the PriA protein to stalled replication forks requires proper configuration of the N-terminal fork-recognition and C-terminal helicase domains and that the latter may stabilize binding and increase binding specificity.  相似文献   
165.
Ko YH  Pan W  Inoue C  Pedersen PL 《Mitochondrion》2002,1(4):339-348
Although signal transduction mechanisms originating from receptors on the plasma membrane and targeted to metabolic and other enzymes/proteins localized in the cytoplasm or the nucleus have been extensively studied in animal cells, few such studies have focused on the mitochondrial energy producing machinery, i.e. the electron transport chain and ATP synthase complex (F0F1). Significantly, it was shown in an earlier collaborative study that platelet-derived growth factor (PDGF), which is linked in signal transduction pathways to tyrosine kinase-dependent phosphorylations, regulates the phosphorylation of the mitochondrial ATP synthase delta subunit in cortical neurons (Zhang et. al., 1995. J. Neurochem. 65, 2812-2815). This is a particularly intriguing finding in light of more recent reports demonstrating that ATP synthases are nanomotors with a central rotor, one component of which is the delta subunit. In this report, evidence is provided that the PDGF-dependent phosphorylation of the ATP synthase delta subunit is not confined to neuronal cells but can be demonstrated also in studies with PDGF-treated NIH3T3 and kidney cells. Evidence is provided also that phosphorylation of the ATP synthase delta subunit may involve its single tyrosine residue, and that this phosphorylation is modulated when the cell based assay includes lysophosphatidic acid (LPA), a phospholipid signaling molecules. Finally, results are presented of an analysis which revealed a number of potential tyrosine phosphorylation sites on three other subunits (alpha, beta, and gamma) of the F1 (catalytic) moiety of the mitochondrial ATP synthase, thus making this important complex a most attractive target for future signal transduction studies.  相似文献   
166.
167.
We investigated multiple forms of rabies virus matrix (M) protein. Under non-reducing electrophoretic conditions, we detected, in addition to major bands of monomer forms (23- and 24-kDa) of M protein, an M antigen-positive slow-migrating minor band (about 54 kDa) in both the virion and infected cells. Relative contents of the 54-kDa and monomer components in the virion were about 20-30% and 70-80% of the whole M protein, respectively, while the content of the 54-kDa component was smaller (about 10-20% of the total M protein) in the cell than in the virion. The 54-kDa components could be extracted from the infected cells with sodium deoxycholate, but they were quite resistant to extraction with 1% nonionic detergents by which most monomer components were solubilized. The 54-kDa component was precipitated more efficiently than the monomer by a monoclonal antibody (mAb; #3-9-16), which recognized a linear epitope located at the N-terminal of the M protein. The mAb #3-9-16 coprecipitated the viral glycoprotein (G), which was demonstrated to be due to strong association between the G and 54-kDa component of the M protein. Monomers and the 54-kDa polypeptide migrated to the same isoelectric point (pI) in twodimensional (2-D) gel electrophoresis, implicating that the 54-kDa component was composed of component(s) of the same pI as that of the M protein monomers. From these results, we conclude that the M antigen-positive 54-kDa polypeptide is a homodimer of M protein, taking an N-terminal-exposed conformation, and is strongly associated with the viral glycoprotein. Possible association with a membrane microdomain of the cell will be discussed.  相似文献   
168.
169.
We used Restriction Landmark Genome Scanning (RLGS) to assess, on a genome-wide basis, the mutation induction rate in mouse germ cells after radiation exposure. Analyses of 1,115 autosomal NotI DNA fragments per mouse for reduced spot intensity, indicative of loss of one copy, in 506 progeny derived from X-irradiated spermatogonia (190, 237 and 79 mice in 0-, 3-, and 5-Gy groups, respectively), permitted us to identify 16 mutations affecting 23 fragments in 20 mice. The 16 mutations were composed of eight small changes (1-9 bp) at microsatellite sequences, five large deletions (more than 25 kb), and three insertions of SINE B2 or LINE1 transposable elements. The maximum induction rate of deletion mutations was estimated as (0.17 +/- 0.09) x 10(-5)/locus Gy(-1). The estimate is considerably lower than 1 x 10(-5)/locus Gy(-1), the mean induction rate of deletion mutations at Russell's 7 loci, which assumed that deletion mutations comprise 50% of all mutations. We interpret the results as indicating that the mean induction rate of mutations in the whole genome may be substantially lower than that at the 7 loci. We also demonstrate the applicability of RLGS for detection of human mutations, which allows direct comparisons between the two species.  相似文献   
170.
Four neutral polysaccharides (BRN-1, BRN-2, BRN-3 and BRN-4) were isolated from the hot water extract of the aerial part of Basella rubra L. They were found to consist of a large amount of d-galactose (81.0-92.4%) and small amounts of l-arabinose (5.4-7.8%), d-glucose (2.2-11.0%) and mannose (∼2.9%). Linkage analysis revealed that all these neutral polysaccharides might be arabinogalactan type I polysaccharides in different molecular weight and chain length. Among them, only BRN-3 showed antiviral activity against herpes simplex virus type 2 (HSV-2) with 50% inhibitory concentration of 55 μg/mL without showing the cytotoxicity up to 2300 μg/mL. Furthermore, the main antiviral target of BRN-3 was shown to be the inhibition of virus adsorption to host cells. This is the first report on the neutral polysaccharide with anti-HSV-2 activity obtained from B. rubra L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号