首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   53篇
  701篇
  2022年   5篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   14篇
  2014年   16篇
  2013年   37篇
  2012年   29篇
  2011年   25篇
  2010年   26篇
  2009年   26篇
  2008年   25篇
  2007年   26篇
  2006年   30篇
  2005年   25篇
  2004年   37篇
  2003年   20篇
  2002年   35篇
  2001年   25篇
  2000年   25篇
  1999年   19篇
  1998年   13篇
  1997年   12篇
  1996年   4篇
  1995年   11篇
  1994年   7篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   22篇
  1989年   10篇
  1988年   13篇
  1987年   5篇
  1986年   10篇
  1985年   7篇
  1984年   8篇
  1982年   5篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1976年   3篇
  1974年   5篇
  1972年   5篇
  1970年   4篇
  1967年   2篇
  1966年   7篇
  1922年   2篇
排序方式: 共有701条查询结果,搜索用时 0 毫秒
611.
Rap2 belongs to the Ras family of small GTP-binding proteins, but its specific roles in cell signaling remain unknown. In the present study, we have affinity-purified from rat brain a Rap2-interacting protein of approximately 155 kDa, p155. By liquid chromatography tandem mass spectrometry, we have identified p155 as Traf2- and Nck-interacting kinase (TNIK). TNIK possesses an N-terminal kinase domain homologous to STE20, the Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase kinase, and a C-terminal regulatory domain termed the citron homology (CNH) domain. TNIK induces disruption of F-actin structure, thereby inhibiting cell spreading. In addition, TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway. Among our observations, TNIK interacted with Rap2 through its CNH domain but did not interact with Rap1 or Ras. TNIK interaction with Rap2 was dependent on the intact effector region and GTP-bound configuration of Rap2. When co-expressed in cultured cells, TNIK colocalized with Rap2, while a mutant TNIK lacking the CNH domain did not. Rap2 potently enhanced the inhibitory function of TNIK against cell spreading, but this was not observed for the mutant TNIK lacking the CNH domain. Rap2 did not significantly enhance TNIK-induced JNK activation, but promoted autophosphorylation and translocation of TNIK to the detergent-insoluble cytoskeletal fraction. These results suggest that TNIK is a specific effector of Rap2 to regulate actin cytoskeleton.  相似文献   
612.
Taurine is known to function as a protectant against various stresses in animal cells. In order to utilize taurine as a compatible solute for stress tolerance of yeast, isolation of cDNA clones for genes encoding enzymes involved in biosynthesis of taurine was attempted. Two types of cDNA clones corresponding to genes encoding cysteine dioxygenase (CDO1 and CDO2) and a cDNA clone for cysteine sulfinate decarboxylase (CSD) were isolated from Cyprinus carpio. Deduced amino acid sequences of the two CDOs and that of CSD showed high similarity to those of CDOs and those of CSDs from other organisms, respectively. The coding regions of CDO1, CDO2, and CSD were subcloned into an expression vector, pESC-TRP, for Saccharomyces cerevisiae. Furthermore, to enhance the efficiency of synthesis of taurine in S. cerevisiae, a CDOCSD fusion was designed and expressed. Expression of CDO and CSD proteins, or the CDO–CSD fusion protein was confirmed by Western blot analysis. HPLC analysis showed that the expression of the proteins led to enhancement of the accumulation level of hypotaurine, a precursor of taurine, rather than taurine. The yeast cells expressing corresponding genes showed tolerance to oxidative stress induced by menadione, but not to freezing–thawing stress.  相似文献   
613.
The developmental changes of embryonic membranes of a dipluran Lepidocampa weberi, with special reference to dorsal organ formation, are described in detail by light, scanning, and transmission electron microscopies. Newly differentiated germ band and serosa secrete the blastodermic cuticle at the entire egg surface beneath the chorion. Soon after, the serosal cells start to move dorsad. All the serosal cells finally concentrate at the dorsal side of the egg and form the dorsal organ. During their concentration, the serosal cells attenuate their cytoplasm to form filaments. The extensive area from which the serosa has receded is occupied by a second embryonic membrane, the amnion, which originates from the embryonic margin. The embryo and newly emerged amnion then secrete three fine cuticular layers, "cuticular lamellae I, II, and III," above which the filaments of the (developing) dorsal organ are situated. With the progression of definitive dorsal closure, the amnion reduces its extension, the dorsal organ is incorporated into the body cavity of the embryo, and the amnion and dorsal organ finally degenerate.The dorsal organ of diplurans is formed by the concentration of whole serosal cells, while that of collembolans is formed by the direct differentiation of a part of serosal cells. However, the dorsal organs of diplurans and collembolans closely resemble each other in major aspects, including that of ultrastructural features, and there is no doubt regarding their homology. The amnion, which has been regarded as being a characteristic of Ectognatha, also develops in the Diplura. This might suggest a closer affinity between the Diplura and Ectognatha than previously believed.  相似文献   
614.
Formation of intracellular aggregates is the hallmark of polyglutamine (polyQ) diseases. We analyzed the components of purified nuclear polyQ aggregates by mass spectrometry. As a result, we found that the RNA-binding protein translocated in liposarcoma (TLS) was one of the major components of nuclear polyQ aggregate-interacting proteins in a Huntington disease cell model and was also associated with neuronal intranuclear inclusions of R6/2 mice. In vitro study revealed that TLS could directly bind to truncated N-terminal huntingtin (tNhtt) aggregates but could not bind to monomer GST-tNhtt with 18, 42, or 62Q, indicating that the tNhtt protein acquired the ability to sequester TLS after forming aggregates. Thioflavin T assay and electron microscopic study further supported the idea that TLS bound to tNhtt-42Q aggregates at the early stage of tNhtt-42Q amyloid formation. Immunohistochemistry showed that TLS was associated with neuronal intranuclear inclusions of Huntington disease human brain. Because TLS has a variety of functional roles, the sequestration of TLS to polyQ aggregates may play a role in diverse pathological changes in the brains of patients with polyQ diseases.  相似文献   
615.

Introduction

Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods

FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry.

Results

The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions

Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.  相似文献   
616.
The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice. We also found that dietary fat absorption was extremely impaired in Clock mutant mice. Circadian expressions of cholecystokinin-A (CCK-A) receptor and lipase mRNAs were damped in the pancreas of Clock mutant mice. We therefore showed that a Clock mutation attenuates obesity induced by a high-fat diet in mice with an ICR background through impaired dietary fat absorption. Our results suggest that circadian clock molecules play an important role in lipid homeostasis in mammals.  相似文献   
617.
Antibacterial peptides have been isolated from a wide range of species. Some of these peptides act on microbial membranes, disrupting their barrier function. With the increasing development of antibiotic resistance by bacteria, these antibacterial peptides, which have a new mode of action, have attracted interest as antibacterial agents. To date, however, few effective high-throughput approaches have been developed for designing and screening peptides that act selectively on microbial membranes. In vitro display techniques are powerful tools to select biologically functional peptides from peptide libraries. Here, we used the ribosome display system to form peptide-ribosome-mRNA complexes in vitro from nucleotides encoding a peptide library, as well as immobilized model membranes, to select specific sequences that recognize bacterial membranes. This combination of ribosome display and immobilized model membranes was effective as an in vitro high-throughput screening system and enabled us to identify motif sequences (ALR, KVL) that selectively recognized the bacterial membrane. Owing to host toxicity, it was not possible to enrich any sequence expected to show antimicrobial activity using another in vitro system, e.g. phage display. The synthetic peptides designed from these enriched motifs acted selectively on the bacterial model membrane and showed antibacterial activity. Moreover, the motif sequence conferred selectivity onto native peptides lacking selectivity, and decreased mammalian cell toxicity of native peptides without decreasing their antibacterial activity.  相似文献   
618.
SUMMARY Insect wing is a key evolutionary innovation for insect radiation, but its origins and intermediate forms are absent from the fossil record. To understand the ancestral state of the wing, expression of three key regulatory genes in insect wing development, wingless (wg), vestigial (vg), and apterous (ap) was studied in two basal insects, mayfly and bristletail. These basal insects develop dorsal limb branches, tracheal gill and stylus, respectively, that have been considered candidates for wing origin. Here we show that wg and vg are expressed in primordia for tracheal gill and stylus. Those primordia are all located in the lateral body region marked by down‐regulation of early segmental wg stripes, but differ in their dorsal–ventral position, indicating their positions drifted within the lateral body region. On the other hand, ap expression was detected in terga of mayfly and bristletail. Notably, the extensive outgrowth of the paranotal lobe of apterygote bristletail developed from the border of ap‐expressing tergal margin, and also expressed wg and vg. The data suggest that two regulatory modules involving wgvg are present in apterygote insects: one associated with lateral body region and induces stick‐like dorsal limb branches, the other associated with the boundary of dorsal and lateral body regions and the flat outgrowth of their interface. A combinatorial model is proposed in which dorsal limb branch was incorporated into dorsal–lateral boundary and acquired flat limb morphology through integration of the two wgvg modules, allowing rapid evolution of the wing.  相似文献   
619.
620.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号