首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13391篇
  免费   1155篇
  国内免费   11篇
  14557篇
  2023年   48篇
  2022年   126篇
  2021年   227篇
  2020年   140篇
  2019年   184篇
  2018年   205篇
  2017年   171篇
  2016年   327篇
  2015年   561篇
  2014年   584篇
  2013年   789篇
  2012年   949篇
  2011年   971篇
  2010年   630篇
  2009年   554篇
  2008年   826篇
  2007年   865篇
  2006年   773篇
  2005年   745篇
  2004年   765篇
  2003年   709篇
  2002年   652篇
  2001年   142篇
  2000年   90篇
  1999年   143篇
  1998年   165篇
  1997年   122篇
  1996年   114篇
  1995年   102篇
  1994年   93篇
  1993年   107篇
  1992年   99篇
  1991年   67篇
  1990年   78篇
  1989年   59篇
  1988年   73篇
  1987年   73篇
  1986年   56篇
  1985年   78篇
  1984年   79篇
  1983年   78篇
  1982年   104篇
  1981年   94篇
  1980年   88篇
  1979年   54篇
  1978年   52篇
  1977年   53篇
  1976年   53篇
  1974年   49篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Cathepsin C activates serine proteases expressed in hematopoietic cells by cleaving an N-terminal dipeptide from the proenzyme upon granule packaging. The lymphocytes of cathepsin C-null mice are therefore proposed to totally lack granzyme B activity and perforin-dependent cytotoxicity. Surprisingly, we show, using live cell microscopy and other methodologies, that cells targeted by allogenic CD8(+) cytotoxic T lymphocyte (CTL) raised in cathepsin C-null mice die through perforin-dependent apoptosis indistinguishable from that induced by wild-type CTL. The cathepsin C-null CTL expressed reduced but still appreciable granzyme B activity, but minimal granzyme A activity. Also, in contrast to mice with inactivation of both their granzyme A/B genes, cathepsin C deficiency did not confer susceptibility to ectromelia virus infection in vivo. Overall, our results indicate that although cathepsin C clearly generates the majority of granzyme B activity, some is still generated in its absence, pointing to alternative mechanisms for granzyme B processing and activation. Cathepsin C deficiency also results in considerably milder immune deficiency than perforin or granzyme A/B deficiency.  相似文献   
972.
Immunological synapse (IS) formation involves receptor–ligand pair clustering and intracellular signaling molecule recruitment with a coincident removal of other membrane proteins away from the IS. As microfilament–membrane linkage is critical to this process, we investigated the involvement of ezrin and moesin, the two ezrin/radixin/moesin proteins expressed in T cells. We demonstrate that ezrin and moesin, which are generally believed to be functionally redundant, are differentially localized and have important and complementary functions in IS formation. Specifically, we find that ezrin directly interacts with and recruits the signaling kinase ZAP-70 to the IS. Furthermore, the activation of ezrin by phosphorylation is essential for this process. In contrast, moesin dephosphorylation and removal, along with CD43, are necessary to prepare a region of the cell cortex for IS. Thus, ezrin and moesin have distinct and critical functions in the T cell cortex during IS formation.  相似文献   
973.
Soil nitrogen (N) is available to rice crops as either nitrate or ammonium, but only nitrate can be accrued in cells and so factors that influence its storage and remobilization are important for N use efficiency (NUE). The hypothesis that the ability of rice crops to remobilize N storage pools is an indicator of NUE was tested. When two commonly grown Chinese rice cultivars, Nong Ken (NK) and Yang Dao (YD), were compared in soil and hydroponics, YD had significantly greater NUE for biomass production. The ability of each cultivar to remobilize nitrate storage pools 24 h after N supply withdrawal was compared. Although microelectrode measurements of the epidermal sub-cellular nitrate pools in leaves and roots showed similar patterns of vacuolar remobilization in both cultivars, whole-tissue analysis showed very little depletion of storage pools after 24 h. However, leaf epidermal cell cytosolic nitrate activities were significantly higher in YD when compared with NK. Before N starvation and growing in 10 mM nitrate, the xylem nitrate activity in YD was lower than that of NK. After 24 h of N starvation the xylem nitrate had decreased more in YD than in NK. Tissue analysis of stems showed that YD had accumulated significantly more nitrate than NK, and the remobilization pattern suggested that this store is important for both cultivars. Changes in nitrate reductase activity (NRA) and expression were measured. Growing in 10 mM nitrate, NRA was undetectable in roots of both cultivars, and the leaf total NRA of equivalent leaves was similar in NK and YD. When the N supply was withdrawn, after 24 h NRA in NK was reduced to 80% but no decrease was found in YD. The proportion of NRA in an active form in YD was significantly higher than that in NK under both nitrate supply and deprivation conditions. Checking NR gene expression showed that leaf expression of OsNia1 was faster to respond to nitrate deprivation than OsNia2 in both cultivars. These measurements are discussed in relation to cultivar differences and physiological markers for NUE in rice.  相似文献   
974.
Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a "gate" in the transmembrane domain (TMD). We used Phi-value analysis to probe the relative timing of the gating motions of alpha-subunit residues located near the ECD-TMD interface. Mutation of four of the seven amino acids in the M2-M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (K(eq)) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Phi-value for the whole linker was approximately 0.64. One interpretation of this result is that the gating motions of the M2-M3 linker are approximately synchronous with those of much of M2 (approximately 0.64), but occur after those of the transmitter binding site region (approximately 0.93) and loops 2 and 7 (approximately 0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed K(eq) by 2800-, 10-, and 18-fold, respectively, and with an average Phi-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (< or =0.51 kcal mol(-1)). The M2-M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an approximately 16-A border and involve about a dozen residues.  相似文献   
975.
HIV-1 persists in peripheral blood monocytes in individuals receiving highly active antiretroviral therapy (HAART) with viral suppression, despite these cells being poorly susceptible to infection in vitro. Because very few monocytes harbor HIV-1 in vivo, we considered whether a subset of monocytes might be more permissive to infection. We show that a minor CD16+ monocyte subset preferentially harbors HIV-1 in infected individuals on HAART when compared with the majority of monocytes (CD14highCD16-). We confirmed this by in vitro experiments showing that CD16+ monocytes were more susceptible to CCR5-using strains of HIV-1, a finding that is associated with higher CCR5 expression on these cells. CD16+ monocytes were also more permissive to infection with a vesicular stomatitis virus G protein-pseudotyped reporter strain of HIV-1 than the majority of monocytes, suggesting that they are better able to support HIV-1 replication after entry. Consistent with this observation, high molecular mass complexes of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) were observed in CD16+ monocytes that were similar to those observed in highly permissive T cells. In contrast, CD14highCD16- monocytes contained low molecular mass active APOBEC3G, suggesting this is a mechanism of resistance to HIV-1 infection in these cells. Collectively, these data show that CD16+ monocytes are preferentially susceptible to HIV-1 entry, more permissive for replication, and constitute a continuing source of viral persistence during HAART.  相似文献   
976.
Fang L  Moore XL  Gao XM  Dart AM  Lim YL  Du XJ 《Life sciences》2007,80(23):2154-2160
Mitofusin-2 (Mfn2) suppresses smooth muscle cell proliferation through inhibition of the Ras-extracellular signal-regulated kinases (ERK1/2) pathway. Since the ERK1/2 pathway is implicated in mediating hypertrophic signaling, we studied the changes in Mfn2 in cardiac hypertrophy using in vitro and in vivo models. Phenylephrine was used to induce hypertrophy in neonatal rat ventricular myocytes (NRVMs). In vivo hypertrophy models included spontaneously hypertensive rats (SHR), pressure-overload hypertrophy by transverse aortic constriction (TAC), hypertrophy of non-infarcted myocardium following myocardial infarction (MI), and cardiomyopathy due to cardiac-restricted overexpression of beta(2)-adrenergic receptors (beta(2)-TG). We determined hypertrophic parameters and analysed expression of atrial natriuretic peptide (ANP) and Mfn2 by real-time PCR. Phosphorylated-ERK1/2 (phospho-ERK) was measured by Western blot. Mfn2 was downregulated in phenylephrine treated NRCMs (by approximately 40%), hypertrophied hearts from SHR (by approximately 80%), mice with TAC (at 1 and 3 weeks, by approximately 50%), and beta(2)-TG mice (by approximately 20%). However, Mfn2 was not downregulated in hypertrophied hearts with 15 weeks of TAC, nor in hypertrophied non-infarcted myocardium following MI. phospho-ERK1/2 was increased in hypertrophied myocardium at 1 week post-TAC, but not in non-infarcted myocardium after MI, indicating that downregulated Mfn2 may be accompanied by an increase of phospho-ERK1/2. This study shows, for the first time, downregulated Mfn2 expression in hypertrophied hearts, which depends on the etiology and time course of hypertrophy. Further study is required to examine the causal relationship between Mfn2 and cardiac hypertrophy.  相似文献   
977.
In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human.  相似文献   
978.
In the present study we have shown that mitochondria isolated from Schizosaccharomyces pombe exhibit antimycin A-sensitive oxygen uptake activity that is exclusively dependent on ethanol and is inhibited by trifluoroethanol, a potent inhibitor of ADH (alcohol dehydrogenase). Ethanol-dependent respiratory activity has, to our knowledge, not been reported in S. pombe mitochondria to date, which is surprising as it has been concluded previously that only one ADH gene, encoding a cytosolic enzyme, occurs in this yeast. Spectrophotometric enzyme assays reveal that ADH activity in isolated mitochondria is increased approximately 16-fold by Triton X-100, which demonstrates that the enzyme is located in the matrix. Using genetic knockouts, we show conclusively that the novel mitochondrial ADH is encoded by adh4 and, as such, is unrelated to ADH isoenzymes found in mitochondria of other yeasts. By performing a modular-kinetic analysis of mitochondrial electron transfer, we furthermore show how ethanol-dependent respiratory activity (which involves oxidation of matrix-located NADH) compares with that observed when succinate or externally added NADH are used as substrates. This analysis reveals distinct kinetic differences between substrates which fully explain the lack of respiratory control generally observed during ethanol oxidation in yeast mitochondria.  相似文献   
979.
Bacterial pathogens have developed sophisticated mechanisms of evading the immune system to survive in infected host cells. Central to the pathogenesis of Mycobacterium tuberculosis is the arrest of phagosome maturation, partly through interference with PtdIns signalling. The protein phosphatase MptpB is an essential secreted virulence factor in M. tuberculosis. A combination of bioinformatics analysis, enzyme kinetics and substrate-specificity characterization revealed that MptpB exhibits both dual-specificity protein phosphatase activity and, importantly, phosphoinositide phosphatase activity. Mutagenesis of conserved residues in the active site signature indicates a cysteine-based mechanism of dephosphorylation and identifies two new catalytic residues, Asp165, essential in catalysis, and Lys164, apparently involved in substrate specificity. Sequence similarities with mammalian lipid phosphatases and a preference for phosphoinositide substrates suggests a potential novel role of MptpB in PtdIns metabolism in the host and reveals new perspectives for the role of this phosphatase in mycobacteria pathogenicity.  相似文献   
980.
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号