首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   213篇
  国内免费   9篇
  1952篇
  2022年   12篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   35篇
  2015年   91篇
  2014年   86篇
  2013年   93篇
  2012年   125篇
  2011年   111篇
  2010年   93篇
  2009年   68篇
  2008年   88篇
  2007年   70篇
  2006年   82篇
  2005年   76篇
  2004年   64篇
  2003年   70篇
  2002年   57篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   20篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1952条查询结果,搜索用时 0 毫秒
51.
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial–mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.  相似文献   
52.
The contour lengths of linear, double-stranded (ds) RNAs from mycovirus PcV and Pseudomonas bacteriophage ø6 have been measured with samples prepared for the electron microscope from 0.05 to 0.5 M NH4Cl solutions. A linear dependence of contour length on the logarithm of ionic strength was found and compared with that of dsDNA (pBR322, linearized and open-circular forms). Conditions for molecular weight determinations of any natural dsRNA by electron microscopy have been established, and the method has been calibrated with ø6 dsRNA of known nucleotide sequence. The results imply that dsRNA in 0.20 M NH4Cl solution has a rise per basepair of 0.271 nm, which is shorter than that in the A-conformation (4%) and in the A′-conformation (10%). The thermal behavior of dsRNA in terms of melting temperature and exhibition of fine structure of melting curves was found to be generally similar to that of dsDNA, as expected from the literature. Folding of dsRNA in ethanolic solution was similar to that of dsDNA. However, in contrast to dsDNA, coiled coils could not be induced by ethanol, which is consistent with dsRNA being stiffer than dsDNA. Concerning dsDNA, the results show that a contraction in rise per basepair by 0.1 nm is coupled with an increase in the winding angle between basepairs by 0.47°, as qualitatively predicted by polyelectrolyte theory.  相似文献   
53.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   
54.
55.
The covalent binding of the anti-diol epoxide of benzo[a]pyrene to cellular DNA of mouse skin in organ culture is affected by the presence of ellagic acid in the culture medium. At 10(-4) M, BaPDE /DNA formation is 40% less than that observed when no ellagic acid is present. Caffeic acid, a similar plant phenolic compound, demonstrates no inhibitory effect on BaPDE /formation. The plant phenolic acids do not drastically interfere with the metabolism of benzo[a]pyrene as shown by the BaP-metabolite profiles of the skin or of the culture medium.  相似文献   
56.
MicroRNAs (miRNAs) play important roles in modulating the neoplastic process of cancers including head and neck squamous cell carcinoma (HNSCC). A genetic polymorphism (rs2292832, C>T) has been recently identified in the precursor of miR-149; nevertheless its clinicopathological implications remain obscure. In this study, we showed that miR-149 is down-regulated in HNSCC compared to normal mucosa and this is associated with a poorer patient survival. In addition, HNSCC patients with the T/T genotype have more advanced tumors and a worse prognosis. Multivariate analysis indicated that patients carried the T/T genotype have a 2.81-fold (95% CI: 1.58–4.97) increased risk of nodal metastasis and 1.66-fold (95% CI: 1.05–2.60) increased risk of mortality compared to other groups. T/T genotype also predicted the worse prognosis of buccal mucosa carcinoma subset of HNSCC. In vitro analysis indicated that exogenous miR-149 expression reduces the migration of HNSCC cells. Moreover, HNSCC cell subclones carrying the pri-mir-149 sequence containing the T variant show a low processing efficacy when converting the pre-mir-149 to mature miR-149. These findings suggest that miR-149 suppresses tumor cell mobility, and that the pre-mir-149 polymorphism may affect the processing of miR-149, resulting in a change in the abundance of the mature form miRNA, which, in turn, modulates tumor progression and patient survival.  相似文献   
57.
Deformable energy storage devices are needed to power next‐generation wearable electronics that interface intimately with human skin. Currently, deformable energy storage devices demonstrate poor performance compared to their rigid lithium‐ion counterparts, forcing wearable manufacturers to design their devices around bulky battery compartments. However, technological advances to create deformable batteries at the component and device level have yielded continuous improvement in stretchable batteries over the last five years. In this Essay, the major strategies at the component and device level that have been successfully employed to create stretchable batteries are reviewed. The outstanding challenges facing deformable energy storage are also discussed, namely, energy density, packaging, delamination, device integration, and manufacturing. This Essay will give researchers who are interested in contributing to the development of deformable batteries a cursory understanding of the most successful strategies to date, and provide insights into the most important directions to pursue in the future.  相似文献   
58.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
59.
Despite the steadily increasing worldwide incidence of colorectal cancer (CRC), an effective noninvasive approach for early detection of CRC is still under investigation. The guaiac-based fecal occult blood test (FOBT) and fecal immunochemical test (FIT) have gained popularity as noninvasive CRC screening tests owing to their convenience and relatively low costs. However, the FOBT and FIT have limited sensitivity and specificity. To develop a noninvasive tool for the detection of CRC, we investigated the sensitivity, specificity, and accuracy of a stool DNA test targeting methylated syndecan-2 (SDC2), which is frequently methylated in patients with CRC. The present study enrolled 62 patients diagnosed as having stage 0-IV CRC and 76 healthy participants between July 2018 and June 2019 from two institutions. Approximately 4.5 g of stool sample was collected from each participant for detection of human methylated SDC2 gene. In total, 48 of 62 (77.4%) patients with CRC showed positive results, whereas 67 out of 76 (88.2%) healthy participants showed negative results. The area under the curve of the receiver operating characteristic curve constructed was 0.872 for discrimination between patients with CRC and healthy individuals. The present study highlights the potential of the fecal methylated SDC2 test as a noninvasive detection method for CRC screening with a relatively favorable sensitivity of 77.4%, a specificity of 88.2% and a positive predictive value of 84.2% compared with other available fecal tests. Further multicenter clinical trials comprising subjects of varied ethnicities are required to validate this test for the mass screening of patients with CRC.  相似文献   
60.
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients’ plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3′UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号