首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   219篇
  国内免费   7篇
  2736篇
  2022年   19篇
  2021年   39篇
  2020年   19篇
  2019年   24篇
  2018年   39篇
  2017年   28篇
  2016年   58篇
  2015年   117篇
  2014年   126篇
  2013年   146篇
  2012年   216篇
  2011年   157篇
  2010年   103篇
  2009年   84篇
  2008年   121篇
  2007年   119篇
  2006年   130篇
  2005年   97篇
  2004年   100篇
  2003年   90篇
  2002年   67篇
  2001年   78篇
  2000年   62篇
  1999年   81篇
  1998年   38篇
  1997年   30篇
  1996年   13篇
  1995年   17篇
  1994年   21篇
  1993年   16篇
  1992年   35篇
  1991年   38篇
  1990年   33篇
  1989年   21篇
  1988年   23篇
  1987年   22篇
  1986年   29篇
  1985年   28篇
  1984年   13篇
  1983年   20篇
  1982年   22篇
  1981年   18篇
  1980年   16篇
  1979年   20篇
  1978年   18篇
  1976年   20篇
  1975年   17篇
  1974年   12篇
  1973年   15篇
  1972年   14篇
排序方式: 共有2736条查询结果,搜索用时 15 毫秒
81.
Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease.  相似文献   
82.
MHAA4549A is a human immunoglobulin G1 (IgG1) monoclonal antibody that binds to a highly conserved epitope on the stalk of influenza A hemagglutinin and blocks the hemagglutinin-mediated membrane fusion in the endosome, neutralizing all known human influenza A strains. Pharmacokinetics (PK) of MHAA4549A and its related antibodies were determined in DBA/2J and Balb-c mice at 5 mg/kg and in cynomolgus monkeys at 5 and 100 mg/kg as a single intravenous dose. Serum samples were analyzed for antibody concentrations using an ELISA and the PK was evaluated using WinNonlin software. Human PK profiles were projected based on the PK in monkeys using species-invariant time method. The human efficacious dose projection was based on in vivo nonclinical pharmacological active doses, exposure in mouse infection models and expected human PK. The PK profiles of MHAA4549A and its related antibody showed a linear bi-exponential disposition in mice and cynomolgus monkeys. In mice, clearance and half-life ranged from 5.77 to 9.98 mL/day/kg and 10.2 to 5.76 days, respectively. In cynomolgus monkeys, clearance and half-life ranged from 4.33 to 4.34 mL/day/kg and 11.3 to 11.9 days, respectively. The predicted clearance in humans was ~2.60 mL/day/kg. A single intravenous dose ranging from 15 to 45 mg/kg was predicted to achieve efficacious exposure in humans. In conclusion, the PK of MHAA4549A was as expected for a human IgG1 monoclonal antibody that lacks known endogenous host targets. The predicted clearance and projected efficacious doses in humans for MHAA4549A have been verified in a Phase 1 study and Phase 2a study, respectively.  相似文献   
83.

Objective

To determine the frequency of lost to follow-up (LTFU) in the setting of usual care for outpatients with rheumatic diseases including RA, SLE, AS, and Ps/PsA, to explore the associated demographic factors, and to investigate the reasons for being LTFU from the original medical care.

Methods

Patients registered between May 2011 and January 2014 at the rheumatology outpatient department of a medical center were included. Those who did not attend their scheduled appointment were defined as LTFU. Univariate and multivariate logistic regression were used to analyze the factors for being LTFU.

Results

A total of 781 patients were enrolled, including 406 patients with RA, 174 with SLE, 136 with AS, and 65 with Ps/PsA. The frequency of LTFU was 23.9%, 25.9%, 35.3%, and 35.4%, respectively. The frequency of LTFU was significantly different between the four rheumatic diseases (p = 0.028). In multivariate logistic regression analysis, an older age increased being LTFU in the patients with RA (OR 1.02; 95% CI 1.00–1.04; p = 0.033), but reduced being LTFU in those with Ps/PsA (OR 0.96; 95% CI 0.92–0.99; p = 0.021). Female patients with SLE and Ps/PsA were more likely to be LTFU, although this did not reach statistical significance (p = 0.056 and 0.071, respectively). The most common reason for being LTFU was moving to other district hospitals from the original medical center due to convenience for the patients with RA and SLE, and stopping medication due to minimal symptoms for the patients with AS and Ps/PsA.

Conclusions

The frequency of LTFU in patients with rheumatic diseases is high. Associated demographic factors included older age in RA, female gender in SLE and Ps/PsA, and younger age in Ps/PsA, with various reasons for being LTFU. Recognizing these associated factors and reasons for being LTFU may help to improve the attendance of patients and the quality of medical care.  相似文献   
84.
Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation.  相似文献   
85.
86.

Background

Longitudinal phenotypic data provides a rich potential resource for genetic studies which may allow for greater understanding of variants and their covariates over time. Herein, we review 3 longitudinal analytical approaches from the Genetic Analysis Workshop 19 (GAW19). These contributions investigated both genome-wide association (GWA) and whole genome sequence (WGS) data from odd numbered chromosomes on up to 4 time points for blood pressure–related phenotypes. The statistical models used included generalized estimating equations (GEEs), latent class growth modeling (LCGM), linear mixed-effect (LME), and variance components (VC). The goal of these analyses was to test statistical approaches that use repeat measurements to increase genetic signal for variant identification.

Results

Two analytical methods were applied to the GAW19: GWA using real phenotypic data, and one approach to WGS using 200 simulated replicates. The first GWA approach applied a GEE-based model to identify gene-based associations with 4 derived hypertension phenotypes. This GEE model identified 1 significant locus, GRM7, which passed multiple test corrections for 2 hypertension-derived traits. The second GWA approach employed the LME to estimate genetic associations with systolic blood pressure (SBP) change trajectories identified using LCGM. This LCGM method identified 5 SBP trajectories and association analyses identified a genome-wide significant locus, near ATOX1 (p?=?1.0E?8). Finally, a third VC-based model using WGS and simulated SBP phenotypes that constrained the β coefficient for a genetic variant across each time point was calculated and compared to an unconstrained approach. This constrained VC approach demonstrated increased power for WGS variants of moderate effect, but when larger genetic effects were present, averaging across time points was as effective.

Conclusion

In this paper, we summarize 3 GAW19 contributions applying novel statistical methods and testing previously proposed techniques under alternative conditions for longitudinal genetic association. We conclude that these approaches when appropriately applied have the potential to: (a) increase statistical power; (b) decrease trait heterogeneity and standard error; (c) decrease computational burden in WGS; and (d) have the potential to identify genetic variants influencing subphenotypes important for understanding disease progression.
  相似文献   
87.
Epigallocatechin‐3‐O‐gallate (EGCG), derived from green tea, has been studied extensively because of its diverse physiological and pharmacological properties. This study evaluates the protective effect of EGCG on angiotensin II (Ang II)‐induced endoglin expression in vitro and in vivo. Cardiac fibroblasts (CFs) from the thoracic aorta of adult Wistar rats were cultured and induced with Ang II. Western blotting, Northern blotting, real‐time PCR and promoter activity assay were performed. Ang II increased endoglin expression significantly as compared with control cells. The specific extracellular signal‐regulated kinase inhibitor SP600125 (JNK inhibitor), EGCG (100 μM) and c‐Jun N‐terminal kinase (JNK) siRNA attenuated endoglin proteins following Ang II induction. In addition, pre‐treated Ang II‐induced endoglin with EGCG diminished the binding activity of AP‐1 by electrophoretic mobility shift assay. Moreover, the luciferase assay results revealed that EGCG suppressed the endoglin promoter activity in Ang II‐induced CFs by AP‐1 binding. Finally, EGCG and the JNK inhibitor (SP600125) were found to have attenuated endoglin expression significantly in Ang II‐induced CFs, as determined through confocal microscopy. Following in vivo acute myocardial infarction (AMI)‐related myocardial fibrosis study, as well as immunohistochemical and confocal analyses, after treatment with endoglin siRNA and EGCG (50 mg/kg), the area of myocardial fibrosis reduced by 53.4% and 64.5% and attenuated the left ventricular end‐diastolic and systolic dimensions, and friction shortening in hemodynamic monitor. In conclusion, epigallocatechin‐3‐O‐gallate (EGCG) attenuated the endoglin expression and myocardial fibrosis by anti‐inflammatory effect in vitro and in vivo, the novel suppressive effect was mediated through JNK/AP‐1 pathway.  相似文献   
88.
著: 《生物信息学》2019,26(5):8-12
随着全球建造业向数字化全面转型,建筑信息模型(BIM)的教学将是未来几年风景园林设计与实施的重要主题。介绍了风景园林专业BIM的教学方法和数字化竖向设计及其应用在BIM场地设计项目中的重要性。数字化竖向设计是实现BIM的途径。风景园林教育必须在其教学中讲解BIM建模方法和过程。  相似文献   
89.
90.
Second‐order susceptibility (SOS) microscopy is used to image and characterize chondrogenesis in cultured human mesenchymal stem cells. SOS analysis shows that the SOS tensor ratios can be used to characterize type I and II collagens in living tissues and that both collagen types are produced at the onset of chondrogenesis. Time‐lapse analysis shows a modulation of extracellular matrix results in a higher rate in increase of type II collagen, as compared to type I collagen. With time, type II collagen content stabilizes at the composition of 70% of total collagen content. SOS microscopy can be used to continuously and noninvasively monitor the production of collagens I and II. With additional development, this technique can be developed into an effective quality control tool for monitoring extracellular matrix production in engineered tissues.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号