首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   19篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   12篇
  2017年   5篇
  2016年   8篇
  2015年   18篇
  2014年   19篇
  2013年   23篇
  2012年   26篇
  2011年   23篇
  2010年   17篇
  2009年   19篇
  2008年   25篇
  2007年   16篇
  2006年   20篇
  2005年   12篇
  2004年   14篇
  2003年   15篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1967年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有366条查询结果,搜索用时 31 毫秒
61.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   
62.

Background

Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3β signaling pathway regulates BMAL1 protein stability and activity.

Principal Findings

GSK3β phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3β-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3β pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.

Conclusions

These findings uncover a previously unknown mechanism of circadian clock control. The GSK3β kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock.  相似文献   
63.
The polycystic kidney disease 1-like 3 (PKD1L3)-polycystic kidney disease 2-like 1 (PKD2L1) complex functions as a Ca(2+)-permeable, non-selective cation channel that is activated by acid and its subsequent removal; this is called an off-response. In this study, we identified a single aspartic residue in PKD2L1 that is responsible for the Ca(2+) permeation of the PKD1L3/PKD2L1 complex. Calcium imaging analysis using point mutants of negatively charged amino acids present in the putative pore regions of PKD1L3 and PKD2L1 revealed that neutralization of the aspartic residue in PKD2L1 (D523N), which is conserved among PKD2 family members, abolished Ca(2+) permeation, despite robust cell surface expression. In contrast, neutralization of the other negatively charged residues of PKD1L3 (D2049N and E2072Q) and PKD2L1 (D525N and D530N) as well as substitution of Asp(523) with a glutamate residue (D523E) had little effect on Ca(2+) permeation properties. These results demonstrate that Asp(523) in PKD2L1 is a key determinant of Ca(2+) permeation into the PKD1L3/PKD2L1 complex and that PKD2L1 contributes to forming the pore of the PKD1L3/PKD2L1 channel.  相似文献   
64.
Coplanar polychlorinated biphenyls included in dioxin-like compounds are bio-accumulated and adversely affect wildlife and human health. Although many researchers have studied the metabolism of PCBs, there have been few reports of the in vitro metabolism of 3,3',4,4',5-pentachlorobiphenyl (PCB126), despite the fact that it has the highest toxicity among PCB congeners. Cytochrome P450 (CYP) 1A1 proteins can metabolize some dioxins and PCBs by hydroxylation, but the activities of human and rat CYP1A1 proteins are very different. The mechanism remains unclear. From our results, rat CYP1A1 metabolized PCB126 into 4-OH-3,3',4',5-tetrachlorobiphenyl and 4-OH-3,3',4',5,5'-pentachlorobiphenyl, but human CYP1A1 did not metabolize. Homology models of the two CYP proteins, and docking studies, showed that differences in the amino acid residues forming their substrate-binding cavities led to differences in the size and shape of the cavities; only the cavity of rat CYP1A1 allowed PCB126 close enough to the haem to be metabolized. Comparison of the amino acid residues of other mammalian CYP1A1 proteins suggested that rats have a unique metabolism of xenobiotics. Our results suggest that it is necessary to be careful in human extrapolation of toxicity data estimated by using the rat as an experimental animal, especially in the case of compounds metabolized by CYP1A1.  相似文献   
65.
The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.  相似文献   
66.
De novo design of supersecondary structures is expected to provide useful molecular frameworks for the incorporation of functional sites as in proteins. A 21 residue long, dehydrophenylalanine-containing peptide has been de novo designed and its crystal structure determined. The apolar peptide folds into a helical hairpin supersecondary structure with two right-handed helices, connected by a tetraglycine linker. The helices of the hairpin interact with each other through a combination of C-H.O and N-H.O hydrogen bonds. The folding of the apolar peptide has been realized without the help of either metal ions or disulphide bonds. A remarkable feature of the peptide is the unanticipated occurrence of an anion binding motif in the linker region, strikingly similar in conformation and function to the "nest" motif seen in several proteins. The observation supports the view for the possible emergence of rudimentary functions over short sequence stretches in the early peptides under prebiotic conditions.  相似文献   
67.
Endothelial expression of the gap junction proteins, connexin (Cx) 37, Cx40, and Cx43, varies within the vascular network. While previous studies suggest that shear stress may upregulate Cx43, it is not well understood if shear stress affects the expression of all endothelial connexins and to what extent. Endothelial cells on the upstream and downstream surfaces of cardiac valves are subjected to considerably different intensities of shear stress. We therefore reasoned that we could determine the extent hemodynamic forces affect the expression of Cx37, Cx40, and Cx43 by comparing their immunohistochemical distribution on the upstream and downstream surfaces of rat cardiac valves. We found 70- to 200-fold greater expression of Cx43 in the endothelial cells on the upstream than on the downstream surfaces. However, Cx37 was expressed almost equally in the endothelial cells on upstream and downstream surfaces, and Cx40, a major connexin in most vascular endothelial cells, was not detected on either surface. In addition to the heterogeneity in Cx43 expression, endothelial cells on the upstream surface were 35% to 65% smaller than those on the corresponding downstream surface. These results suggest that shear stress may affect endothelial cell size and Cx43 expression but not Cx37 expression.  相似文献   
68.
The objective of this study was to ligate the xylanase gene A (xynA) isolated from Ruminococcus albus 7 into the promoter and signal-peptide region of the lichenase [β-(1,3-1,4)-glucanase] gene of Streptococcus bovis JB1. This fusion gene was inserted into the pSBE11 vector, and the resulting recombinant, plasmid pXA, was used to transform S. bovis 12-U-1 cells. The transformant, S. bovis 12UXA, secreted the xylanase, which was stable against freeze-thaw treatment and long-time incubation at 37°C. The introduction of pXA and production of xylanase did not affect cell growth, and the xylanase produced degraded xylan from oat-spelt and birchwood. Received: 24 June 2002 / Accepted: 7 October 2002  相似文献   
69.
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo.  相似文献   
70.
Arabis gemmifera is a hyperaccumulator of Cd and Zn   总被引:1,自引:0,他引:1  
Hyperaccumulators are essential for phytoremediation of heavy metals. In Europe and North America, many studies have been conducted to find more effective plants for phytoremediation of various pollutants. In Japan, this field of research has just recently come more into focus. A type of fern in Japan, Athyrium yokoscense, is well known as a hyperaccumulator of Cd and Zn. However, it is not suitable for phytoremediation because it is a summer green and grows slowly. Therefore, in order to find hyperaccumulators other than from A. yokoscense, we surveyed plants growing at polluted sites in Japan. We found that the Brassicae Arabis gemmifera is a hyperaccumulator of Cd and Zn, with phytoextraction capacities almost equal to Thlaspi caerulescens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号