首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   37篇
  2024年   3篇
  2023年   13篇
  2022年   7篇
  2021年   19篇
  2020年   6篇
  2019年   21篇
  2018年   20篇
  2017年   16篇
  2016年   33篇
  2015年   42篇
  2014年   52篇
  2013年   76篇
  2012年   66篇
  2011年   81篇
  2010年   36篇
  2009年   33篇
  2008年   43篇
  2007年   40篇
  2006年   32篇
  2005年   23篇
  2004年   19篇
  2003年   19篇
  2002年   18篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1994年   4篇
  1991年   4篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1982年   5篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有809条查询结果,搜索用时 15 毫秒
11.
β-lactam group of antibiotics is the most widely used therapeutic molecules for treating bacterial infections. The main mode of bacterial resistance to β-lactams is by β-lactamases. In the present study, we report our results on the role of cation–π interactions in β-lactamases and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while tyrosine is comparatively higher than phenylalanine and tryptophan in the π group. Our results indicate that cation–π interactions might play an important role in the global conformational stability of β-lactamases.  相似文献   
12.
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.  相似文献   
13.
Poor drug delivery and penetration of antibody-mediated therapies pose significant obstacles to effective treatment of solid tumors. This study explored the role of pharmacokinetics, valency, and molecular weight in maximizing drug delivery. Biodistribution of a fibroblast growth factor receptor 4 (FGFR4) targeting CovX-body (an FGFR4-binding peptide covalently linked to a nontargeting IgG scaffold; 150 kDa) and enzymatically generated FGFR4 targeting F(ab)2 (100 kDa) and Fab (50 kDa) fragments was measured. Peak tumor levels were achieved in 1 to 2 hours for Fab and F(ab)2versus 8 hours for IgG, and the percentage injected dose in tumors was 0.45%, 0.5%, and 2.5%, respectively, compared to 0.3%, 2%, and 6% of their nontargeting controls. To explore the contribution of multivalent binding, homodimeric peptides were conjugated to the different sized scaffolds, creating FGFR4 targeting IgG and F(ab)2 with four peptides and Fab with two peptides. Increased valency resulted in an increase in cell surface binding of the bivalent constructs. There was an inverse relationship between valency and intratumoral drug concentration, consistent with targeted consumption. Immunohistochemical analysis demonstrated increased size and increased cell binding decreased tumor penetration. The binding site barrier hypothesis suggests that limited tumor penetration, as a result of high-affinity binding, could result in decreased efficacy. In our studies, increased target binding translated into superior efficacy of the IgG instead, because of superior inhibition of FGFR4 proliferation pathways and dosing through the binding site barrier. Increasing valency is therefore an effective way to increase the efficacy of antibody-based drugs.  相似文献   
14.
Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L.) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen of alternate hosts. Conversely, the corn foliage is largely neglected as a food source by WCR beetles, leading to a perception of a passive interaction between the two. We report here a novel recessive mutation of corn that was identified and named after its foliar susceptibility to corn rootworm beetles (crw1). The crw1 mutant under field conditions was exceptionally susceptible to foliar damage by WCR beetles in an age-specific manner. It exhibits pleiotropic defects on cell wall biochemistry, morphology of leaf epidermal cells and lower structural integrity via differential accumulation of cell wall bound phenolic acids. These findings indicate that crw1 is perturbed in a pathway that was not previously ascribed to WCR susceptibility, as well as implying the presence of an active mechanism(s) deterring WCR beetles from devouring corn foliage. The discovery and characterization of this mutant provides a unique opportunity for genetic analysis of interactions between maize and adult WCR beetles and identify new strategies to control the spread and invasion of this destructive pest.  相似文献   
15.
This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamide ligands with chains of 1–5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with 15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even “static” proteins in studies of protein-ligand binding, including rational ligand design approaches.  相似文献   
16.
Neurochemical Research - Post-translational modification (PTMs) of proteins by ubiquitin and ubiquitin-like modifiers such as interferon-stimulated gene 15 (ISG15) and small ubiquitin-related...  相似文献   
17.
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.  相似文献   
18.
ABSTRACT

FT-IR and FT-Raman spectra of 2,2′-bipyridine-3,3′-dicarboxylic acid (B3DA), 2,2′-bipyridine-4,4′-dicarboxylic acid (B4DA) and 2,2′-bipyridine-5,5′-dicarboxylic acid (B5DA) were recorded and analysed. The quantum chemical calculations of the title compounds begin with barrier potentials at different rotation angles around the C–C′ and C–Cα bonds in order to arrive conformation of lowest energy using DFT employing B3LYP functional with 6-311++G(d,p) basis set. This confirmation was further optimised to get the global minimum geometry. The vibrational frequencies along with IR, Raman intensities were computed, the rms error between observed and calculated frequencies were 11.2 cm?1, 10.2 cm?1 and 12.2 cm?1 for B3DA, B4DA, and B5DA. An 87-element modified valence force field is derived by solving the inverse vibrational problem using Wilson’s GF matrix method. This force field is refined using 163 observed fundamentals employing in overlay least-squares technique. The average error between computed and experimental frequencies was found as 12.85 cm?1 using potential energy distribution (PED) and eigenvectors. By using the gauge-independent atomic orbital (GIAO) method calculate the 1H and 13C NMR chemical shifts of the molecules and compared with experimental results. The first-order hyperpolarisability, HOMO and LUMO energies, molecular electrostatic potential (MESP) and natural orbital analysis (NBO) of titled compounds were evaluated using DFT.  相似文献   
19.
Mutations in the gene-encoding vesicle lipopolysaccharide-induced tumor necrosis factor (LITAF) protein cause Charcot–Marie–Tooth type 1C (CMT1C) disease, a neurological disorder. The LITAF gene is mapped to chromosome number 16 and can be found at cytogenetic location 16p13 of the chromosome. CMT1C-linked small integral membrane protein of lysosome/late endosome mutants are loss-of-function mutants that act in a dominant negative manner to impair endosomal trafficking, leading to prolonged extracellular signal-regulated kinases 1/2 signaling downstream of ErbB activation. Mutation W116G in the LITAF decreases the stability of the protein and also interrupts the functioning of gene. We have analyzed the single nucleotide polymorphism (SNP) results of 28 nsSNPs obtained from dbSNP. We also carried out multiple molecular dynamics simulations of 200 ns and obtained results of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent-accessible surface area, H-bond, and principal component analysis to check and prove the stability of both the wild type and the mutant. The protein was then checked for its aggregation and the results showed loss of helix. The loss of helix leads to the instability of the protein.  相似文献   
20.
Members of the ADAM (a disintegrin and metalloprotease) family are type I transmembrane proteins involved in biological processes of proteolysis, cell adhesion, cell–matrix interaction, as well as in the intracellular signaling transduction. In the present study, expression patterns of seven members of the ADAM family were investigated at the early stages of the developing cochlea by in situ hybridization. The results show that each individual ADAM is expressed and regulated in the early developing cochlea. ADAM9, ADAM10, ADAM17, and ADAM23 are initially and widely expressed in the otic vesicle at embryonic day 2.5 (E2.5) and in the differential elements of the cochlear duct at E9, while ADAM12 is expressed in acoustic ganglion cells at E7. ADAM22 is detectable in cochlear ganglion cells as early as from E4 and in the basilar papilla from E7. Therefore, the present study extends our previous results and suggests that ADAMs also play a role in the early cochlear development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号