首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   15篇
  2011年   17篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
91.
Abstract

The resistance to the endocrine therapy of breast cancer leads to the emergence of new class of drugs that downregulates the estrogen receptor action known as selective estrogen receptor downregulators (SERDs). The first approved SERD is fluvestrant; after this, there are several downregulators evolved and are in clinical trials, in which the brilanestrant (BRI) molecule shows nM range of binding affinity and efficacy. In the present study, to understand the binding nature of BRI molecule in the active site of ERα, the molecular docking analysis has been performed. Further, the QM/MM calculations were performed for the BRI–ERα complex to analyze the charge density distribution of intermolecular interactions. The molecular dynamics (MD) simulation was employed to understand the stability and binding mechanism of BRI molecule through root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF) and binding free energy calculations. From the MD simulation trajectory analysis, the alterations of Helix12 conformation and the key residue (Lys529), which is responsible for the ERα downregulation, have been identified. Further, the interaction between the H3 and H12 regions was identified for the antagonism of BRI molecule. The current study led us to understand the binding mechanism, antagonism and downregulation of BRI molecule, and this knowledge is essential to design novel SERDs for the treatment of endocrine-resistant positive breast cancer.

Communicated by Ramaswamy H. Sarma  相似文献   
92.
93.
GPER/GPR30 is a seven-transmembrane G protein-coupled estrogen receptor that regulates many aspects of mammalian biology and physiology. We have previously described both a GPER-selective agonist G-1 and antagonist G15 based on a tetrahydro-3H-cyclopenta[c]quinoline scaffold. The antagonist lacks an ethanone moiety that likely forms important hydrogen bonds involved in receptor activation. Computational docking studies suggested that the lack of the ethanone substituent in G15 could minimize key steric conflicts, present in G-1, that limit binding within the ERα ligand binding pocket. In this report, we identify low-affinity cross-reactivity of the GPER antagonist G15 to the classical estrogen receptor ERα. To generate an antagonist with enhanced selectivity, we therefore synthesized an isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety. We demonstrate that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER. G36 selectively inhibits estrogen-mediated activation of PI3K by GPER but not ERα. It also inhibits estrogen- and G-1-mediated calcium mobilization as well as ERK1/2 activation, with no effect on EGF-mediated ERK1/2 activation. Similar to G15, G36 inhibits estrogen- and G-1-stimulated proliferation of uterine epithelial cells in vivo. The identification of G36 as a GPER antagonist with improved ER counterselectivity represents a significant step towards the development of new highly selective therapeutics for cancer and other diseases.  相似文献   
94.
In this study, the medium requirements to increase the production of xylitol by using Candida tropicalis (CT) have been investigated. The technique of single addition or omission of medium components was applied to determine the nutritional requirements. The addition of amino acids such as Asp, Glu, Gln, Asn, Thr, and Gly had no significant effect on CT growth. However, in the absence of other metal ions, there was a higher concentration of cell growth and xylitol production when only Zn2+ was present in the medium. The analysis of various vitamins unveiled that biotin and thiamine were the only vitamins required for the growth of CT. Surprisingly, when only biotin was present in the medium as a vitamin, there was less growth of CT than when the medium was complete, but the amount of xylitol released was significantly higher. Overall, this study will increase the xylitol production using the single omission or addtion technique.  相似文献   
95.
Tribal peoples are endowed with enriched traditional wisdom to use available nature resources around them. They are well versed in the usage of plant for treating various diseases. They have used powder or extract or paste form of the plant parts such as root, shoot, whole plant, fruits and leaves etc. The recipe known by the tribal people was passed on only to their family members and community through mouth to mouth practice. Hence, the knowledge is confined to particular people alone. It is always expedient to store information in the database, so that it will be accessible by everyone from everywhere. To achieve this, MEDDB has been developed, which stores the details of 110 plant species that are commonly used by tribes for fever, asthma, cold, cough, diabetes, diarrhea, dysentery, eye infections, stomach ache, wounds and snake bite. The details of each plant were collected from the literature and through web search to give comprehensive and exhaustive information. Each plant entry is compiled under the subheadings viz., common name, classification, physical characteristics, medicinal uses, active constituents, and references.  相似文献   
96.
97.
Annadurai G  Lee JF 《Biodegradation》2007,18(3):383-392
Biodegradation of phenol using Pseudomonas pictorum (NICM 2074) a potential biodegradant of phenol was investigated for its degrading potential under different operating conditions. The neural network input parameter set consisted of the same set of four levels of maltose (0.025, 0.05, 0.075 g/l), phosphate (3, 12.5, 22 g/l), pH (7, 8, 9) and temperature (30°C, 32°C, 34°C) on phenol degradation was investigated and a Artificial Neural Network (ANN) model was developed to predict the extent of degradation. The learning, recall and generalization characteristic of neural networks was studied using phenol degradation system data. The efficiency of the model generated by the ANN, was tested and compared with the results obtained from an established second order polynomial multiple regression analysis (MRA). Further, the two models (ANN and MRA) were used to predict the percentage of degradation of phenol for blind test data. Performance of both the models were validated in the cases of training and test data, ANN was recommended based on the following higher coefficient of determination R 2; lower standard error of residuals and lower mean absolute percentage deviation.  相似文献   
98.
AimsPerform in-silico analysis of human SOS1 mutations to elucidate their pathogenic role in Noonan syndrome (NS).BackgroundNS is an autosomal dominant genetic disorder caused by single nucleotide mutation in PTPN11, SOS1, RAF1, and KRAS genes. NS is thought to affect approximately 1 in 1000. NS patients suffer different pathogenic effects depending on the mutations they carry. Analysis of the mutations would be a promising predictor in identifying the pathogenic effect of NS.MethodsWe performed computational analysis of the SOS1 gene to identify the pathogenic nonsynonymous single nucleotide polymorphisms (nsSNPs) th a t cause NS. SOS1 variants were retrieved from the SNP database (dbSNP) and analyzed by in-silico tools I-Mutant, iPTREESTAB, and MutPred to elucidate their structural and functional characteristics.ResultsWe found that 11 nsSNPs of SOS1 that were linked to NS. 3D modeling of the wild-type and the 11 nsSNPs of SOS1 showed that SOS1 interacts with cardiac proteins GATA4, TNNT2, and ACTN2. We also found that GRB2 and HRAS act as intermediate molecules between SOS1 and cardiac proteins. Our in-silico analysis findings were further validated using induced cardiomyocytes (iCMCs) derived from NS patients carrying SOS1 gene variant c.1654A>G (NSiCMCs) and compared to control human skin fibroblast-derived iCMCs (C-iCMCs). Our in vitro data confirmed that the SOS1, GRB2 and HRAS gene expressions as well as the activated ERK protein, were significantly decreased in NS-iCMCs when compared to C-iCMCs.ConclusionThis is the first in-silico and in vitro study demonstrating that 11 nsSNPs of SOS1 play deleterious pathogenic roles in causing NS.  相似文献   
99.

Background  

Phosphorus is an essential macronutrient for the growth of plants. However, in most soils a large portion of phosphorus becomes insoluble and therefore, unavailable to plants. Knowledge on biodiversity of phosphate-solubilizing fluorescent pseudomonads is essential to understand their ecological role and their utilization in sustainable agriculture.  相似文献   
100.
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号