首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   35篇
  641篇
  2023年   6篇
  2022年   14篇
  2021年   18篇
  2020年   13篇
  2019年   23篇
  2018年   19篇
  2017年   12篇
  2016年   23篇
  2015年   33篇
  2014年   34篇
  2013年   49篇
  2012年   42篇
  2011年   48篇
  2010年   28篇
  2009年   27篇
  2008年   31篇
  2007年   32篇
  2006年   16篇
  2005年   14篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   8篇
  1989年   10篇
  1988年   3篇
  1987年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有641条查询结果,搜索用时 0 毫秒
101.
Herpes simplex virus 1 (HSV-1) is a enveloped, double stranded DNA virus that is the causative agent of various diseases including cold sores, encephalitis, and ocular keratitis. Previous research has determined that HSV-1 modulates cellular apoptotic pathways. Apoptosis is triggered in infected cells early in infection; however, later in the infection the apoptotic response is suppressed due to the expression of several viral apoptotic antagonists. This sets us a delicate balance between pro- and anti-apoptotic processes during the lytic phase of infection. Several studies have demonstrated that the apoptotic balance can be shifted during infection of certain cell types, leading to apoptosis of the infected cells (HSV-1-dependent apoptosis). For example, HEp-2 cells infected with an ICP27-null recombinant HSV-1 virus undergo HSV-1-dependent apoptosis. Differences in the sensitivity to HSV-1-dependent apoptosis have been revealed. Although many tumor cells have been found to be highly sensitive to this apoptotic response, with the exception hematological cells, all primary human cells tested prior to this study have been shown to be resistant to HSV-1-dependent apoptosis. Here, we demonstrate that early passage neonatal and adult human keratinocytes, which are usually the first cells to encounter HSV-1 in human infection and support the lytic stage of the life cycle, display membrane blebbing and ballooning, chromatin condensation, caspase activation, and cleavage of cellular caspase substrates when infected with an ICP27-null recombinant of HSV-1. Furthermore, caspase activation is needed for the efficient apoptotic response. These results suggest that apoptotic machinery may be a target for modulating HSV-disease in patients.  相似文献   
102.
Central neurotransmitters and aging   总被引:10,自引:0,他引:10  
S N Pradhan 《Life sciences》1980,26(20):1643-1656
  相似文献   
103.
Photoactivable reagents have been useful for studying the structural aspects of membrane hydrophobic core. We have reported earlier (Anjaneyulu, P.S.R., and Lala, A. K. (1982) FEBS Lett. 146, 165-167) the use of diazofluorene as a probe for fluorescent photochemical labeling of hydrophobic core in artificial membranes. To quantitate and enhance the monitoring ability of this probe, we have synthesized 2-[3H]diazofluorene of high specific activity. This reagent rapidly partitions into phosphatidylcholine vesicles and selectively labels the fatty acyl chains of phosphatidylcholine. The insertion yield (13%) is not affected by the presence of scavengers like reduced glutathione. 2-[3H]Diazofluorene also readily partitions into erythrocyte membranes and on photolysis labels the membrane. The overall insertion was 48% with 9.7% in protein fraction and the rest in lipids. The distribution of radioactivity in labeled protein fraction was restricted to integral membrane proteins with Band 3 being the major protein labeled. There is little or no labeling associated with extrinsic proteins like spectrin. Further analysis of labeled Band 3 by treatment with chymotrypsin indicated that the labeling was restricted to the membrane spanning CH-17 and CH-35 fragments. No labeling of the cytoplasmic fragment of Band 3 could be observed. 2-[3H]Diazofluorene should prove useful for studying integral membrane proteins and their membrane-spanning regions.  相似文献   
104.
105.
The uridylic acid rich nuclear RNAs (U1-U6 snRNAs) are involved mainly in the processing of pre-mRNA and pre-rRNA. So, any control of cell growth through pre-mRNA/pre-rRNA processing may have some regulation through altered UsnRNAs metabolism. With this idea, attempts have been made to see how the metabolism of the six major UsnRNAs' changed during the normal process of cellular proliferation associated with differentiation from pluripotent/totipotent stem cells of early embryonic stage to much more differentiated state of different cell/tissue lineages in different tissues/organs during the fetal and neonatal stages of growth. It has been seen that the levels of the six major UsnRNAs were high in day 8 embryo when the cells were mainly pluripotent/totipotent in nature, and during the progression of embryonic development the levels of these UsnRNAs gradually decreased (35-65%) up to the midgestational period (day 13) with some exception, when the organogenesis has already been started. However in the fetal life, the levels of these UsnRNAs were maximum or comparable around 18 ± 2 days of gestation in comparison to that in day 8 embryo when the kinetics of the maturational status of the different organs were quite high. But, the levels of these UsnRNAs' became low during day 21 of fetal life or in day 0 of birth (perturation period) in all the tissues/organs except high UsnRNAs' level in spleen. In the neonatal life, around 3 ± 1 days of birth these UsnRNAs' levels again became maximum in all the tissues/organs (except in thymus) followed by decrease up to 5/6 days, and to become steady with slight increase within one to two weeks, when the kinetics of the organ maturation reached to a steady state. In case of thymus, the levels of the U3-U6 snRNAs were high on day 0 of birth followed by decrease in their level on day 1/2 and then increased to become steady within 2-4 weeks; whereas the U1 and U2 snRNAs' levels were high on day 3 of birth and the subsequent changes were similar to that in other tissues/organs.Thus the different UsnRNAs' metabolism in the perturation period and in the early stages of neonatal life has indicated the differential cellular functions in these two stages of development. These alterations in the metabolism of these UsnRNAs might be due to the differential changes in the rate of synthesis of these UsnRNAs and/or with their differential turnover rate in the different stages of development. Also, the differential variations of these UsnRNAs' levels have been observed among the different tissues/organs at the respective stages of development indicating the differences in the UsnRNAs' metabolism among the different cell/tissue lineages. Thus, it can be concluded that the metabolism of these UsnRNAs were developmentally regulated with some cell/tissue lineage variations, which might have some role in the developmentally regulated cellular process of proliferation and differentiation, through altered RNA splicing and processing.  相似文献   
106.
Initial velocity determinations were conducted with human DNA (cytosine-5) methyltransferase (DNMT1) on unmethylated and hemimethylated DNA templates in order to assess the mechanism of the reaction. Initial velocity data with DNA and S-adenosylmethionine (AdoMet) as variable substrates and product inhibition studies with methylated DNA and S-adenosylhomocysteine (AdoHcy) were obtained and evaluated as double-reciprocal plots. These relationships were linear for plasmid DNA, exon-1 from the imprinted small nuclear ribonucleoprotein-associated polypeptide N, (CGG.CCG)(12), (m(5)CGG. CCG)(12), and (CGG.CCG)(73) but were not linear for (CGG. Cm(5)CG)(12). Inhibition by AdoHcy was apparently competitive versus AdoMet and uncompetitive/noncompetitive versus DNA at 相似文献   
107.

Background

GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.

Methods and Findings

In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.

Conclusions

Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs.  相似文献   
108.
109.
110.
The -galactosidase (EC 3.2.1.32) of Corynebacterium murisepticum (inducible by lactose and galactose) was purified by successive column chromatography on Sephadex G-200, DEAE-Sephadex A-50 and DEAE-cellulose (DE52). The enzyme was found to be a dimer of identical subunits of molecular mass 100,000 daltons. The K m values of the enzyme for the substrates lactose and o-nitrophenyl--d-galactopyranoside (ONPG) are 16.7 mM and 4.4 mM, respectively, indicating, its low affinity for the substrates. The Ouchterlony immunodiffusion method exhibited immunological homogeneity of the enzyme preparation. The catalytic site of the enzyme does not take part in antigen-antibody reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号