首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  165篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   9篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   11篇
  2009年   9篇
  2008年   12篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1973年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
61.
62.
Transmission electron microscopical study of olfactory epithelium of a mud-dwelling catfish,Heteropneustes fossilis (Bloch) shows receptor, supporting, goblet and basal cells. The receptor cells are of ciliated and microvillous type. Both ciliated and microvillous receptor cells are provided with olfactory knob. The dendrite of all the receptor cells bears many longitudinally arranged microtubules. Occurrence of the rod cell and its function is quite debatable. Specialized juctional complexes between the receptor and adjacent cells are clearly noted. The supporting cells are both ciliated and nonciliated. The ciliated supporting cells are responsible for water ventilation in the olfactory chamber as well as in the inter-lamellar spaces. This facilitates better perception of odours by the receptor cells. In addition to providing mechanical support to other cells, the nonciliated supporting cells also have a secretory function which is evident from the present study. The different stages of maturity of goblet cells are well documented. The presence of white cells in the olfactory epithelium is a very rare finding.  相似文献   
63.
Natural resistance associated macrophage proteins (NRAMPs) are evolutionarily conserved metal transporters involved in the transport of essential and nonessential metals in plants. Fifty protein interactors of a Brassica juncea NRAMP protein was identified by a Split-Ubiquitin Yeast-Two-Hybrid screen. The interactors were predicted to function as components of stress response, signaling, development, RNA binding and processing. BjNRAMP4.1 interactors were particularly enriched in proteins taking part in photosynthetic or light regulated processes, or proteins predicted to be localized in plastid/chloroplast. Further, many interactors also had a suggested role in cellular redox regulation. Among these, the interaction of a photosynthesis-related thioredoxin, homologous to Arabidopsis HCF164 (High-chlorophyll fluorescence164) was studied in detail. Homology modeling of BjNRAMP4.1 suggested that it could be redox regulated by BjHCF164. In yeast, the interaction between the two proteins was found to increase in response to metal deficiency; Mn excess and exogenous thiol. Excess Mn also increased the interaction in planta and led to greater accumulation of the complex at the root apoplast. Network analysis of Arabidopsis homologs of BjNRAMP4.1 interactors showed enrichment of many protein components, central to chloroplastic/cellular ROS signaling. BjNRAMP4.1 interacted with BjHCF164 at the root membrane and also in the chloroplast in accordance with its proposed function related to photosynthesis, indicating that this interaction occurred at different sub-cellular locations depending on the tissue. This may serve as a link between metal homeostasis and chloroplastic/cellular ROS through protein–protein interaction.  相似文献   
64.
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSD s) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSD s (n  = 7), compared to controls (n  = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n  = 5) (vs. control, n  = 5) by high‐throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSD s. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSD s. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases.

Cover Image for this Issue: doi: 10.1111/jnc.14177 .
  相似文献   
65.
An endogenous activator capable of stimulating the gastric H+,K+-ATPase activity has been purified to homogeneity from dog and pig gastric cells and found to be a dimer of two identical 40-kDa subunits in the active state. Identical nature of the activator monomers was revealed by the detection of lysine as the sole N-terminal amino acid. The activator from one species can stimulate the H+,K+-ATPase from another species and vice versa. Such cross-activation is consistent with the striking similarities in the amino acid composition between the two species, suggesting considerable homology in the activator molecules from different species. The activator exhibited several unique features during modulation of the H+,K+-ATPase reaction. It appreciably enhances affinity of the H+,K+-ATPase for K+, known to increase turnover of the enzyme. To complement this K+ affinity, the activator also enhances ability of the H+,K+-ATPase to generate more transition state (E*.ATP) complex by increasing the entropy of activation (delta S++) of the system as revealed from an Arrhenius plot of the data on temperature activation. In addition, the activator shows both positive cooperativity and strong inhibition, depending on its concentration. Thus, up to the ratio of the H+,K+-ATPase and activator of about 1:2 (on the protein basis), the activator shows sigmoidal activation (Hill coefficient = 4.5), but beyond such concentration a strong inhibition was observed. Finally, Ca2+ at low (2-4 microM) concentration strongly inhibits the activator-stimulated H+,K+-ATPase. It is proposed that the activator may be acting as a link in the signal transducing cascade system between the intracellular second messenger (Ca2+) and the physiological response (gastric H+ transport).  相似文献   
66.
Despite the economical importance of shiitake (Lentinula ssp.) mushrooms, until the present date little information exists on cultivated and wild species in correlation with geographic origin applying molecular techniques. Use of a high resolution molecular tool like AFLP for assessing genetic similarity and geographical diversity would be an important step towards understanding of different Lentinula species. Thirteen wild and 17 cultivated accessions of 3 Lentinula species were analysed with 64 EcoRI–MseI primer combinations and finally 32 reproducible and polymorphic primer combinations were considered for the analysis. A total of 816 informative AFLP markers were generated and scored as binary data. These data were analysed using various method packages for cluster analysis, genetic diversity and genetic differentiation. Percentage polymorphism was high (62.99%) among the species studied. Different clustering analysis segregated the wild and the cultivated species into two major branches, with the wild samples being further grouped according to their geographic location. Overall polymorphisms among cultivated strains in the USA were higher than that of the cultivated strains in Japan (58.9%).  相似文献   
67.
Reactivation of single-stranded DNA phage, photodynamically inactivated in the presence of proflavine sulfate, by three isogenic Escherichia coli strains having different DNA repair capabilities has been studied. It was found that reactivation of photoinactivated phiX174 was possible only if the host cells were recombination proficient (recA(+)) and had been lightly irradiated with UV light prior to infection; the presence of the uvrA(+) gene was not essential. Only a small part of the proflavine-mediated photodynamic damage in phiX174 could be repaired in this fashion. Burst sizes of reactivated phages were, however, comparable to those of normal unirradiated phages.  相似文献   
68.
Separation of the gradient-purified gastric microsome into two membrane subfractions of distinct enzymatic and phospholipid composition has been achieved by mild SDS (0.033% w/v) treatment followed by sucrose gradient centrifugation of the pig and rabbit gastric microsomes. While the high-density membranes had all of the (H+,K+)-ATPase and K+-pNPPase activities and revealed a single major 100-kDa band on SDS-PAGE, the low-density membranes contained all of the 5'-nucleotidase and nearly all of the Mg2+-ATPase. In the present study, the low-density subfraction has been characterized to be derived from the apical membranes and the high-density one from the intracellular tubulovesicular membranes of the parietal cells. Such characterization was based primarily on sole dependency of the apical plasma membranes on the endogenous activator for (H+,K+)-ATPase activity, differential sensitivity of the activator (AF)-dependent and -independent (H+,K+)-ATPase on micromolar vanadate and Ca2+, specific vitamin B12 binding ability of the apical plasmalemma, phospholipid and protein profiles of the two membrane subfractions, and other parameters. The AF, mentioned previously, has recently been implicated as a cytosolic regulator of the gastric (H+,K+)-ATPase [Bandopadhyay et al. (1987) J. Biol. Chem. 262, 5664-5670]. Two different forms (i.e., AF-dependent and -independent forms) of the (H+,K+)-ATPase are suggested to be present in the tubulovesicles on the basis of differential vanadate sensitivity while the AF-dependent form alone is present in the apical membranes. The data have been discussed in terms of stimulation-induced membrane transformation characteristic of the H+-secreting epithelia including the acid-secreting cells of the stomach.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号