首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18834篇
  免费   1686篇
  国内免费   1427篇
  21947篇
  2023年   242篇
  2022年   531篇
  2021年   893篇
  2020年   604篇
  2019年   687篇
  2018年   726篇
  2017年   538篇
  2016年   699篇
  2015年   1147篇
  2014年   1263篇
  2013年   1364篇
  2012年   1561篇
  2011年   1498篇
  2010年   980篇
  2009年   833篇
  2008年   905篇
  2007年   875篇
  2006年   770篇
  2005年   656篇
  2004年   617篇
  2003年   543篇
  2002年   515篇
  2001年   392篇
  2000年   390篇
  1999年   359篇
  1998年   168篇
  1997年   161篇
  1996年   158篇
  1995年   119篇
  1994年   146篇
  1993年   90篇
  1992年   155篇
  1991年   147篇
  1990年   122篇
  1989年   98篇
  1988年   82篇
  1987年   96篇
  1986年   83篇
  1985年   92篇
  1984年   48篇
  1983年   48篇
  1982年   48篇
  1981年   36篇
  1980年   37篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1976年   33篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system, which is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered to have comparable properties, but to be functionally separated by their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, whereas TrxR1 efficiently reduced both Trx1 and Trx2. TrxR2 displayed strikingly lower activity with dithionitrobenzoic acid (DTNB), lipoamide, and the quinone substrate juglone compared to TrxR1, and TrxR2 could not reduce lipoic acid. However, Sec-deficient two-amino-acid-truncated TrxR2 was almost as efficient as full-length TrxR2 in the reduction of DTNB. We found that the gold(I) compound auranofin efficiently inhibited both full-length TrxR1 and TrxR2 and truncated TrxR2. In contrast, some newly synthesized gold(I) compounds and cisplatin inhibited only full-length TrxR1 or TrxR2 and not truncated TrxR2. Surprisingly, one gold(I) compound, [Au(d2pype)(2)]Cl, was a better inhibitor of TrxR1, whereas another, [(iPr(2)Im)(2)Au]Cl, mainly inhibited TrxR2. These compounds also inhibited TrxR activity in the cytoplasm and mitochondria of cells, but their cytotoxicity was not always dependent on the proapoptotic proteins Bax and Bak. In conclusion, this study reveals significant differences between human TrxR1 and TrxR2 in substrate specificity and metal compound inhibition in vitro and in cells, which may be exploited for development of specific TrxR1- or TrxR2-targeting drugs.  相似文献   
962.

Background

Protein-RNA interactions play an important role in numbers of fundamental cellular processes such as RNA splicing, transport and translation, protein synthesis and certain RNA-mediated enzymatic processes. The more knowledge of Protein-RNA recognition can not only help to understand the regulatory mechanism, the site-directed mutagenesis and regulation of RNA–protein complexes in biological systems, but also have a vitally effecting for rational drug design.

Results

Based on the information of spatial adjacent residues, novel feature extraction methods were proposed to predict protein-RNA interaction sites with SVM-KNN classifier. The total accuracies of spatial adjacent residue profile feature and spatial adjacent residues weighted accessibility solvent area feature are 78%, 67.07% respectively in 5-fold cross-validation test, which are 1.4%, 3.79% higher than that of sequence neighbour residue profile feature and sequence neighbour residue accessibility solvent area feature.

Conclusions

The results indicate that the performance of feature extraction method using the spatial adjacent information is superior to the sequence neighbour information approach. The performance of SVM-KNN classifier is little better than that of SVM. The feature extraction method of spatial adjacent information with SVM-KNN is very effective for identifying protein-RNA interaction sites and may at least play a complimentary role to the existing methods.
  相似文献   
963.
We developed a new instrumental method by which human melanoma cells (LU1205) are sonoporated via radiation pressures exerted by highly-confined ultrasonic waves produced by high lateral-resolution ultrasonic micro-transducer arrays (UMTAs). The method enables cellular-level site-specific sonoporation within the cell monolayer due to UMTAs and can be applicable in the delivery of drugs and gene products in cellular assays. In this method, cells are seeded on the biochip that employs UMTAs for high spatial resolution and specificity. UMTAs are driven by 30-MHz sinusoidal signals and the resulting radiation pressures induce sonoporation in the targeted cells. The sonoporation degree and the effective lateral resolution of UMTAs are determined by performing fluorescent microscopy and analysis of carboxylic-acid-derivatized CdSe/ZnS quantum dots passively transported into the cells. Models representing the transducer-generated ultrasound radiation pressure, the ultrasound-inflicted cell membrane wound, and the transmembrane transport through the wound are developed to determine the ultrasound-pressure-dependent wound size and enhanced cellular uptake of nanoparticles. Model-based calculations show that the effective wound size and cellular uptake of nanoparticles increase linearly with increasing ultrasound pressure (i.e., at applied radiation pressures of 0.21, 0.29, and 0.40 MPa, the ultrasound-induced initial effective wound radii are 150, 460, and 650 nm, respectively, and the post-sonoporation intracellular quantum-dot concentrations are 7.8, 22.8, and 29.9 nM, respectively) and the threshold pressure required to induce sonoporation in LU1205 cells is ~0.12 MPa.  相似文献   
964.
This study evaluates a two-stage bioprocess for recovering bioenergy in the forms of hydrogen and methane while treating organic residues of ethanol fermentation from tapioca starch. A maximum hydrogen production rate of 0.77 mmol H2/g VSS/h can be achieved at volumetric loading rate (VLR) of 56 kg COD/m3/day. Batch results indicate that controlling conditions at S0/X0 = 12 with X0 = 4000 mg VSS/L and pH 5.5-6 are important for efficient hydrogen production from fermentation residues. Hydrogen-producing bacteria enriched in the hydrogen bioreactor are likely utilizing lactate and acetate for biohydrogen production from ethanol-fermentation residues. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 0.37 mmol CH4/g VSS/h at VLR of 8 kg COD/m3/day. Approximately 90% of COD in ethanol-fermentation residues can be removed and among that 2% and 85.1% of COD can be recovered in the forms of hydrogen and methane, respectively.  相似文献   
965.
We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.  相似文献   
966.
Chemical examination of the gorgonian coral Junceella fragilis resulted in the isolation of four pairs of acetyl isomers belonging to briarane diterpenoids, including five new compounds. Their structures were determined on the basis of extensive spectroscopic (IR, MS, NMR, and single‐crystal X‐ray diffraction) analysis in association with the chemical conversion. Each pair of isomers featured by dynamical interconversion through as acetyl migration in 1,2‐diol, which was postulated to be generated under the formation of a cyclic orthoacetate intermediate. All compounds exerted the inhibitory activities against the nitric oxide production in RAW264.7 macrophage cells.  相似文献   
967.
The alpha-like globin gene cluster in rabbits contains embryonic zeta- globin genes, an adult alpha-globin gene, and theta-globin genes of undetermined function. The basic arrangement of genes, deduced from analysis of cloned DNA fragments, is 5'-zeta 0-zeta 1-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3'. However, the pattern of restriction fragments containing zeta- and theta-globin genes varies among individual rabbits. Analysis of BamHI fragments of genomic DNA from 24 New Zealand white rabbits revealed eight different patterns of fragments containing zeta-globin genes. The large BamHI fragments containing genes zeta 0 and zeta 1 are polymorphic in length, whereas a 1.9-kb fragment containing the zeta 2 gene and the 3.5-kb fragment containing the zeta 3 gene do not vary in size. In contrast to this constancy in the size of the restriction fragments, the copy number of the zeta 2 and zeta 3 genes does vary among different rabbits. No length polymorphism was detected in the BamHI fragments containing the theta-globin genes, but again the copy number varies for restriction fragments containing the theta 2 gene. The alpha 1- and theta 1-globin genes are located in a nonpolymorphic 7.2-kb BamHI fragment. The combined data from hybridization with both zeta and theta probes shows that the BamHI cleavage pattern does not vary within the region 5'-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3', but the pattern genomic blot-hybridization patterns for the progeny of parental rabbits with different zeta-globin gene patterns shows that the polymorphic patterns are inherited in a Mendelian fashion. Two different haplotypes have been mapped based on the genomic blot-hybridization data. The variation in the alpha-like globin gene cluster in the rabbit population results both from differences in the copy number of the duplication block containing the zeta-zeta-theta gene set and from the presence or absence of polymorphic BamHI sites.   相似文献   
968.
Erinacine A, a major active component of a diterpenoid derivative isolated from Hericium erinaceus mycelium, has been demonstrated to exert anticancer effects. Herein, we present an investigation of the molecular mechanism of erinacine A induction associated with cancer cells’ aggressive status and death. A proteomic approach was used to purify and identify the differentially expressed proteins following erinacine A treatment and the mechanism of its action in apoptotic and the targets of erinacine A. Our results demonstrate that erinacine A treatment of HCT‐116 and DLD‐1 cells increased cell cytotoxicity and reactive oxygen species (ROS) production as well as decreased cell proliferation and invasiveness. Ten differentially displayed proteins were determined and validated in vitro and in vivo between the erinacine A‐treated and untreated groups. In addition, erinacine A time‐dependent induction of cell death and inhibitory invasiveness was associated with sustained phosphorylation of the PI3K/mTOR/p70S6K and ROCK1/LIMK2/Cofilin pathways. Furthermore, we demonstrated that erinacine A–induced HCT‐116 and DLD‐1 cells viability and anti‐invasion properties by up‐regulating the activation of PI3K/mTOR/p70S6K and production of ROS. Experiments involving specific inhibitors demonstrated that the differential expression of cofilin‐1 (COFL1) and profilin‐1 (PROF1) during erinacine A treatment could be involved in the mechanisms of HCT‐116 and DLD‐1 cells death and decreased aggressiveness, which occurred via ROCK1/LIMK2/Cofilin expression, with activation of the PI3K/mTOR/p70S6K signalling pathway. These findings elucidate the mechanism of erinacine A inhibiting the aggressive status of cells by activating PI3K/mTOR/p70S6K downstream signalling and the novel protein targets COF1 and PROF1; this could be a good molecular strategy to limit the aggressiveness of CRC cells.  相似文献   
969.
970.
Previous studies have shown that expression of activator protein-1 (AP-1) family is significantly elevated in triple-negative breast cancer (TNBC), compared with that in other breast cancer subtypes. Here we investigated the anti-tumor effect and mechanism of T-5224, an inhibitor of c-Fos/AP-1, on TNBC. We identified that T-5224 inhibited the proliferation, migration, and invasion of TNBC cells and resulted in an increase in apoptosis. Furthermore, we found that OLFML2A is a key regulatory protein acting downstream of AP-1 and is involved in T-5224-targeted AP-1 action. Multiple clinical databases online have identified that high OLFML2A level is associated with poor prognosis in TNBC patients. In summary, our experimental and bioinformatic studies indicated that OLFML2A is necessary for AP-1-overexpressing TNBC. These findings demonstrate that AP-1-overexpressing TNBC dependent on OLFML2A, and targeting both AP-1 and OLFML2A through T‐5224 may be a synergistic therapeutic strategy for this clinically challenging subset of breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号