首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   9篇
  2022年   3篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   13篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   6篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有177条查询结果,搜索用时 93 毫秒
61.
62.
Globin prepared from hemoglobin of adult tupai (Tupaia glis) was separated into alpha and beta polypeptide chains by CM-cellulose column chromatography. The S-aminoethylated alpha polypeptide chain and S-carboxymethylated beta polypeptide chain were each digested with trypsin, and the sequences of all the peptides thus obtained were established. The ordering of these tryptic peptides in the alpha and beta polypeptide chains was deduced from the homology of their primary structures with that of human adult hemoglobin. In this way the primary structures of the alpha and beta polypeptide chains of tupai hemoglobin were established; 27 amino acids in the alpha polypeptide chain and 26 in the beta chain differ from those in human adult hemoglobin.  相似文献   
63.
When supplemented to the culture medium of mushroom Coprinus cinereus, rice husks soaked beforehand in methanol stimulated mycelia growth up to a concentration of 80 mg/ml dose-dependently, whereas the non-treated stimulated mycelia growth up to 20 mg/ml. This result suggests the existence of both stimulatory and inhibitory substances in rice husks. Since momilactone A (MLA) is recognized as one of the phytoalexins in rice husks, its biological activity against mycelia growth was tested. Momilactone A inhibited mycelia growth at 5 microg/disc, whereas the methanol extract of husks did so at 1 mg/disc, wherein 0.2 microg of MLA was estimated by LC/MS/MS. Thus the phytoalexins including MLA should inhibit mycelia growth. Rice husks stimulated mycelia growth in some edible mushroom species such as Grifola frondosa (maitake), Lentinus edodes (shiitake), Pleurotus eryngii (eringi), and P. ostreatus (hiratake). Our findings might lead to the development of new profitable cultivation methods for mushrooms using rice husks.  相似文献   
64.
Umemoto T  Yamato M  Nishida K  Kohno C  Yang J  Tano Y  Okano T 《FEBS letters》2005,579(29):6569-6574
The side population (SP) phenotype is shared by stem cells in various tissues and species. Here we demonstrate SP cells with Hoechst dye efflux were surprisingly collected from the epithelia of both the rat limbus and central cornea, unlike in human and rabbit eyes. Our results show that rat limbal SP cells have a significantly higher expression of the stem cell markers ABCG2, nestin, and notch 1, compared to central corneal SP cells. Immunohistochemistry also revealed that ABCG2 and the epithelial stem/progenitor cell marker p63 were expressed only in basal limbal epithelial cells. These results demonstrate that ABCG2 expression is closely linked to the stem cell phenotype of SP cells.  相似文献   
65.
66.
PAP-1 is an in vitro phosphorylation target of the Pim-1 oncogene. Although PAP-1 binds to Pim-1, it is not a substrate for phosphorylation by Pim-1 in vivo. PAP-1 has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). However, RP9 is a rare disease and only two missense mutations have been described, so the report of a link between PAP-1 and RP9 was tentative. The precise cellular role of PAP-1 was also unknown at that time. We now report that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35. Furthermore, we used in vitro and in vivo splicing assays to show that PAP-1 has an activity, which alters the pattern of pre-mRNA splicing and that this activity is dependent on the phosphorylation state of PAP-1. We used the same splicing assay to examine the activities of two mutant forms of PAP-1 found in RP9 patients. The results showed that while one of the mutations, H137L, had no effect on splicing activity compared with that of wild-type PAP-1, the other, D170G, resulted in both a defect in splicing activity and a decreased proportion of phosphorylated PAP-1. The D170G mutation may therefore cause RP by altering splicing of retinal genes through a decrease in PAP-1 phosphorylation. These results demonstrate that PAP-1 has a role in pre-mRNA splicing and, given that three other splicing factors have been implicated in adRP, this finding provides compelling further evidence that PAP-1 is indeed the RP9 gene.  相似文献   
67.
We have identified a novel nucleolar protein, PAP-1-associated protein-1 (PAPA-1), after screening the interacting proteins with Pim-1-associated protein-1 (PAP-1), a protein that is a phosphorylation target of Pim-1 kinase. PAPA-1 comprises 345 amino acids with a basic amino-acid cluster. PAPA-1 was found to be localized in the nucleolus in transfected HeLa cells, and the lysine/histidine cluster was essential for nucleolar localization of PAPA-1. PAPA-1 protein and mRNA expression decreased upon serum restimulation of starvation-synchronized cells, which displayed maximum level of PAPA-1 expression at G0 and early G1 phase of the cell cycle. Ectopic expression of PAPA-1 induced growth suppression of cells, and the effect was dependent on its nucleolar localization in established HeLa cell lines that inducibly express PAPA-1 or its deletion mutant under the control of a tetracycline-inducible promoter. Furthermore, when PAPA-1-inducible HeLa cells were synchronized by thymidine, colcemid or mimosine, and then PAPA-1 was expressed, the proportion of cells at the G1 phase was obviously increased. These results suggest that PAPA-1 induces growth and cell cycle arrests at the G1 phase of the cell cycle.  相似文献   
68.
69.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   
70.
Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo−/−) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号