首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   9篇
  2022年   3篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   13篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   6篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
21.
The light chain fraction was separated from rabbit skeletal muscle myosin and four kinds of light chains, L-1, L-2, L-3 and L-4 in the fraction were further isolated by column chromatography using DEAE-cellulose DE-52. After amino-ethylation, the L-2 light chain was digested with trypsin. It was also digested with chymotrypsin and pepsin, respectively, after carboxymethylation. Each of the tryptic, chymotryptic and peptic peptides thus obtained was separated and purified and their amino acid compositions were analyzed.  相似文献   
22.
23.
The aspartyl residue at position 433 of γ-glutamyltranspeptidase of Escherichia coli K-12 was replaced by an asparaginyl residue. This substitution enabled γ-glutamyltranspeptidase to deacylate glutaryl-7-aminocephalosporanic acid, producing 7-aminocephalosporanic acid, which is a starting material for the synthesis of semisynthetic cephalosporins.  相似文献   
24.
25.

Background

Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria.

Methodology/Principal Findings

In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase.

Conclusions

Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.  相似文献   
26.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   
27.
PAP-1, a novel target protein of phosphorylation by pim-1 kinase.   总被引:3,自引:0,他引:3  
Protooncogene, pim-1, has been reported to be a predisposition for lymphomagenesis along with myc, and its protein product, Pim-1, has been shown to be a serine/threonine protein kinase, whose activity is involved in proliferation and differentiation of blood cells. The signal transduction pathways neither to nor from Pim-1, however, have been clarified. We have cloned a cDNA encoding a novel Pim-1 binding protein, PAP-1, comprising 213 amino acids with a basic amino-acid cluster near the C-terminus. PAP-1 was colocalized with Pim-1 in human HeLa cell nuclei. The in vitro binding assays using GST fusion proteins of the wild-type and various deletion mutants revealed that the whole molecule of Pim-1 is required for the binding activity to PAP-1 and that Pim-1 binds to the region from amino-acid numbers 1-147 of PAP-1, or to two segments in the region. The association of PAP-1 with Pim-1 was also shown in vivo in transfected cells. Furthermore, PAP-1 was phosphorylated in vitro by Pim-1, but not a kinase-negative Pim-1 mutant. The two serine residues of PAP-1 at amino acids 204 and 206 near the C-terminus were phosphorylated by Pim-1. PAP-1 is thus thought to be a target protein for Pim-1 kinase.  相似文献   
28.
29.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   
30.
Purinergic Signalling - P2X purinergic receptors are ATP-driven ionic channels expressed as trimers and showing various functions. A subtype, the P2X4 receptor present on microglial cells is highly...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号