首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   29篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   3篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
21.
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis.  相似文献   
22.
This study examined the effects of p53 gene status on DNA damage-induced cell death and chemosensitivity to various chemotherapeutic agents in non-small cell lung cancer (NSCLC) cells. A mutant p53 gene was introduced into cells carrying the wild-type p53 gene and also vice versa to introduce the wild-type p53 gene into cells carrying the mutant p53 gene. Chemosensitivity and DNA damage-induced apoptosis in these cells were then examined. This study included five cell lines, NCI-H1437, NCI-H727, NCI-H441 and NCI-H1299 which carry a mutant p53 gene and NCI-H460 which carries a wild-type p53 gene. Mutant p53-carrying cells were transfected with the wild-type p53 gene, while mutant p53 genes were introduced into NCI-H460 cells. These p53 genes were individually mutated at amino acid residues 143, 175, 248 and 273. The representative cell line NCI-H1437 cells transfected with wild-type p53 gene (H1437/wtp53) showed a dramatic increase in susceptibility to three anticancer agents (7-fold to cisplatin, 21-fold to etoposide, and 20-fold to camptothecin) compared to untransfected or neotransfected H1437 cells. An increase in chemosensitivity was also observed in wild-type p53 transfectants of H727, H441, H1299 cells. The results of chemosensitivity were consistent with the observations on apoptotic cell death. H1437/wtp53 cells, but not H1437 parental cells, exhibited a characteristic feature of apoptotic cell death that generated oligonucleosomal-sized DNA fragments. In contrast, loss of chemosensitivity and lack of p53-mediated DNA degradation in response to anticancer agents were observed in H460 cells transfected with mutant p53. These observations suggest that the increase in chemosensitivity was attributable to wild-type p53 mediation of the process of apoptosis. In addition, our results also suggest that p53 gene status modulates the extent of chemosensitivity and the induction of apoptosis by different anticancer agents in NSCLC cells.  相似文献   
23.
24.
Four hybridomas secreting monoclonal antibodies (MAbs) of the IgG1 subclass against human carcinoembryonic antigen (CEA) were obtained from fusion of P3-NS1/1-Ag4 myeloma cells with splenic cells from mice immunized with purified CEA. None of the MAbs showed cross-reactivity to perchloric acid extractable antigens from the normal human colon by an inhibition radioimmunoassay. However, MAb C27 showed the highest affinity to CEA. The intensity of immunofluorescence staining of human colorectal cancer cells with MAb C27 correlates well to the cellular CEA content of cancer cells. LS174T showed the highest intensity of fluorescence (95%) while COLO320DM and COLO320HRS were the lowest (0.5%). None of the normal human organs - colon, lungs, liver, spleen or kidneys-showed positive staining by immunoperoxidase anti-peroxidase (PA) techniques, while tissues from colorectal carcinoma (CRC), gastric carcinoma, hepatoma and lung cancer gave a positive rate of 100% (30/30), 96.6% (28/29), 32.1% (9/28) and 82.1% (69/84) respectively. Results suggest that MAb C27 can be used in immunodetection and radiolocalization of colorectal carcinoma.  相似文献   
25.
Here, we describe the early events in the disease pathogenesis of Alexander disease. This is a rare and usually fatal neurodegenerative disorder whose pathological hallmark is the abundance of protein aggregates in astrocytes. These aggregates, termed "Rosenthal fibers," contain the protein chaperones alpha B-crystallin and HSP27 as well as glial fibrillary acidic protein (GFAP), an intermediate filament (IF) protein found almost exclusively in astrocytes. Heterozygous, missense GFAP mutations that usually arise spontaneously during spermatogenesis have recently been found in the majority of patients with Alexander disease. In this study, we show that one of the more frequently observed mutations, R416W, significantly perturbs in vitro filament assembly. The filamentous structures formed resemble assembly intermediates but aggregate more strongly. Consistent with the heterozygosity of the mutation, this effect is dominant over wild-type GFAP in coassembly experiments. Transient transfection studies demonstrate that R416W GFAP induces the formation of GFAP-containing cytoplasmic aggregates in a wide range of different cell types, including astrocytes. The aggregates have several important features in common with Rosenthal fibers, including the association of alpha B-crystallin and HSP27. This association occurs simultaneously with the formation of protein aggregates containing R416W GFAP and is also specific, since HSP70 does not partition with them. Monoclonal antibodies specific for R416W GFAP reveal, for the first time for any IF-based disease, the presence of the mutant protein in the characteristic histopathological feature of the disease, namely Rosenthal fibers. Collectively, these data confirm that the effects of the R416W GFAP are dominant, changing the assembly process in a way that encourages aberrant filament-filament interactions that then lead to protein aggregation and chaperone sequestration as early events in Alexander disease.  相似文献   
26.
Two proteases (P1 and P2) and a chitinase (C1) were purified from the culture supernatant of Serratia ureilytica TKU013 with squid pen as the sole carbon/nitrogen source. The molecular masses of P1, P2 and C1 determined by SDS-PAGE were approximately 50 kDa, 50 kDa and 60 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of P1, P2 and C1 were (pH 10, 40 degrees C, pH 7-11, and <50 degrees C), (pH 10, 40 degrees C, pH 8-11, and <40 degrees C) and (pH 6, 50 degrees C, pH 5-8, and <50 degrees C), respectively. P1 and P2 were inhibited by Mg(2+), EDTA and C1 was inhibited completely by Cu(2+). The antioxidant activity of TKU013 culture supernatant was 72% per mL (DPPH scavenging ability). With this method, we have shown that squid pen wastes can be utilized and have revealed its hidden potential in the production of functional foods.  相似文献   
27.
Desmin-related myopathy and cataract are both caused by the R120G mutation in alphaB-crystallin. Desmin-related myopathy is one of several diseases characterized by the coaggregation of intermediate filaments with alphaB-crystallin, and it identifies intermediate filaments as important physiological substrates for alphaB-crystallin. Using recombinant human alphaB-crystallin, the effects of the disease-causing mutation R120G upon the structure and the chaperone activities of alphaB-crystallin are reported. The secondary, tertiary, and quaternary structural features of alphaB-crystallin are all altered by the mutation as deduced by near- and far-UV circular dichroism spectroscopy, size exclusion chromatography, and chymotryptic digestion assays. The R120G alphaB-crystallin is also less stable than wild type alphaB-crystallin to heat-induced denaturation. These structural changes coincide with a significant reduction in the in vitro chaperone activity of the mutant alphaB-crystallin protein, as assessed by temperature-induced protein aggregation assays. The mutation also significantly altered the interaction of alphaB-crystallin with intermediate filaments. It abolished the ability of alphaB-crystallin to prevent those filament-filament interactions required to induce gel formation while increasing alphaB-crystallin binding to assembled intermediate filaments. These activities are closely correlated to the observed disease pathologies characterized by filament aggregation accompanied by alphaB-crystallin binding. These studies provide important insight into the mechanism of alphaB-crystallin-induced aggregation of intermediate filaments that causes disease.  相似文献   
28.
29.
The estimation of the unknown parameters in the stratified Cox's proportional hazard model is a typical example of the trade‐off between bias and precision. The stratified partial likelihood estimator is unbiased when the number of strata is large but suffer from being unstable when many strata are non‐informative about the unknown parameters. The estimator obtained by ignoring the heterogeneity among strata, on the other hand, increases the precision of estimates although pays the price for being biased. An estimating procedure, based on the asymptotic properties of the above two estimators, serving to compromise between bias and precision is proposed. Two examples in a radiosurgery for brain metastases study provide some interesting demonstration of such applications.  相似文献   
30.
The R120G mutation in alphaB-crystallin causes desmin-related myopathy. There have been a number of mechanisms proposed to explain the disease process, from altered protein processing to loss of chaperone function. Here, we show that the mutation alters the in vitro binding characteristics of alphaB-crystallin for desmin filaments. The apparent dissociation constant of R120G alphaB-crystallin was decreased while the binding capacity was increased significantly and as a result, desmin filaments aggregated. These data suggest that the characteristic desmin aggregates seen as part of the disease histopathology can be caused by a direct, but altered interaction of R120G alphaB-crystallin with desmin filaments. Transfection studies show that desmin networks in different cell backgrounds are not equally affected. Desmin networks are most vulnerable when they are being made de novo and not when they are already established. Our data also clearly demonstrate the beneficial role of wild-type alphaB-crystallin in the formation of desmin filament networks. Collectively, our data suggest that R120G alphaB-crystallin directly promotes desmin filament aggregation, although this gain of a function can be repressed by some cell situations. Such circumstances in muscle could explain the late onset characteristic of the myopathies caused by mutations in alphaB-crystallin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号