首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   64篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   10篇
  2019年   4篇
  2018年   21篇
  2017年   12篇
  2016年   20篇
  2015年   32篇
  2014年   40篇
  2013年   85篇
  2012年   55篇
  2011年   77篇
  2010年   51篇
  2009年   52篇
  2008年   97篇
  2007年   87篇
  2006年   93篇
  2005年   96篇
  2004年   100篇
  2003年   91篇
  2002年   101篇
  2001年   9篇
  2000年   13篇
  1999年   17篇
  1998年   20篇
  1997年   18篇
  1996年   20篇
  1995年   21篇
  1994年   34篇
  1993年   21篇
  1992年   10篇
  1991年   8篇
  1990年   12篇
  1989年   10篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   10篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1974年   6篇
  1970年   2篇
排序方式: 共有1435条查询结果,搜索用时 542 毫秒
991.
The synthesis and structure-activity relationships of N-phenyl-N'-[3-(4-phenylnaphthylidinoyl)]urea derivatives 3 as a novel structural class of potent ACAT inhibitors is described. A 3-methoxy group substituted on the naphthylidinone 4-phenyl ring, together with a 1-N-(n)butyl substitution, SM-32504 (3m), gave a potent ACAT inhibitor, in vitro, respectively. The most potent compound, SM-32504 (3m), decreased the serum cholesterol level significantly in a high fat and high cholesterol-fed mouse model.  相似文献   
992.
A natural polysaccharide schizophyllan (SPG) has been known to form a stable complex with poly(dA). We attached a poly(dA)(80) tail to the both ends of a linear double-stranded DNA, which had been prepared from a plasmid DNA vector. The poly(dA) tailed DNA verified to form complex with SPG by gel electrophoresis and atomic force microscopy (AFM). AFM images indicated that the complexes exhibit a dumbbell-like architecture, that is, quite similar to that of adenovirus genome. The complex demonstrated excellent exonuclease resistance, probably because of the protection effect by SPG complexation.  相似文献   
993.
A series of 1- and 4-(2-naphthylmethyl)-1H-imidazoles (3 and 4) has been synthesized and evaluated as C(17,20)-lyase inhibitors. Several 6-methoxynaphthyl derivatives showed potent C(17,20)-lyase inhibition, suppression of testosterone biosynthesis in rats and reduction in the weight of prostate and seminal vesicles in rats, whereas most of these compounds increased the liver weight after consecutive administrations. The effect on the liver weight was removed by incorporation of a hydroxy group and an isopropyl group at the methylene bridge, as seen in (S)-28d and (S)-42. Selectivity for C(17,20)-lyase over 11beta-hydroxylase is also discussed, and (S)-42 was found to be a more than 260-fold selective inhibitor. Furthermore, (S)-42 showed a potent suppression of testosterone biosynthesis after a single oral administration in monkeys. These data suggest that (S)-42 may be a promising agent for the treatment of androgen-dependent prostate cancer.  相似文献   
994.
BACKGROUND: Pseudosarcomatous fibromyxoid tumor (PFT) of the urinary bladder is an uncommon benign lesion that can involve any site in the bladder. Cellular features of PFT of the bladder are exceedingly rare. We describe the urinary cytology in a PFT patient who displayed numerous papillary fragments that suggested a malignant tumor. CASE: A 52-year-old man was seen at the hospital for evaluation of gross hematuria. At cystoscopy, the urologist observed a 3-cm, smooth, polypoid and ulcerated mass extending from the trigone to the bladder neck. Urinary cytology showed many papillary clusters with irregular nuclear margins in the bloody cell background. No spindle cells were noted. Cytology was interpreted as papillary growth, factor transitional cell carcinoma, grade 2-3. A laparotomy with partial resection of the urinary bladder was carried out, and histologically the tumor was composed of spindle, stellate, fibroblastic cells embedded in myxoid stroma with little collagen. Immunohistochemical and ultrastructural studies revealed the fibroblastic nature of the lesion. The final diagnosis was PFT of the bladder on the basis of histologic examination of the resected material. CONCLUSION: Papillary fragments are a diagnostic pitfall in urinary cytology of PFT lesions.  相似文献   
995.
Inactivation of the p53 gene is one of the most frequent genetic alterations in carcinogenesis. We studied gene mutations, the mRNA expression of p53, and the accumulation of p53 protein in chemical hepatocarcinogenesis in rats. Samples consisting of 44 precancerous foci and 18 cancerous foci were collected by laser capture microdissection (LCM), and analyzed for mutations in rat p53 gene exons 5-8 by PCR-single-strand conformational polymorphism (PCR-SSCP). We found that 25 PCR-SSCP bands of exons 6/7 and 8 were altered in 22/62 (35.4%) LCM samples. Direct p53 gene sequencing showed that 20/62 (9 precancer, 11 cancer) (32.3%) LCM samples exhibited 34 point mutations. Ten LCM samples exhibited double or triple mutations in exons 6/7 and 8 simultaneously. A quantitative analysis of p53 mRNA showed that p53 mRNA peaked at an early stage (week 6) in the precancerous lesion, 20 times that of adjacent normal tissue, and returned to normal by week 23. Similar to precancer, p53 mRNA in cancer was five times as high as that of adjacent normal tissue at week 12, and was closer to normal at week 23. When p53 mRNA declined from a high to low, positive immunostaining for the p53 protein began to be seen in precancerous and cancerous foci, suggesting that the p53 protein had accumulated in these foci. Results show that p53 gene mutation is present in initial chemical hepatocarcinogenesis and p53 mRNA concentration is clearly elevated before gene mutation. Once the p53 gene has mutated, mRNA concentration progressively declines, suggesting that mutation leads to inactivation of the p53 gene.  相似文献   
996.
Tryptophan synthase from hyperthermophile, Pyrococcus furiosus, was found to be a tetrameric form (22) composed of and 2 subunits. To elucidate the relationship between the features of the subunit association and the thermal stability of the tryptophan synthase, the subunit association and thermal stability were examined by isothermal titration calorimetry and differential scanning calorimetry, respectively, in comparison with those of the counterpart from Escherichia coli. The association constants between the and subunits in the hyperthermophile protein were of the order of 108 M1, which were higher by two orders of magnitude than those in the mesophile one. The negative values of the heat capacity change and enthalpy change upon the subunit association were much lower in the hyperthermophile protein than in the mesophile one, indicating that the conformational change of the hyperthermophile protein coupled to the subunit association is slight. The denaturation temperature of the subunit from the hyperthermophile was enhanced by 17 degrees C due to the formation of the 22 complex. This increment in denaturation temperature due to complex formation could be quantitatively estimated by the increase in the association constant compared with that of the counterpart from E. coli.  相似文献   
997.
998.
Ethanol can enhance G(salpha)-stimulated adenylyl cyclase (AC) activity. Of the nine isoforms of AC, type 7 (AC7) is the most sensitive to ethanol. The potentiation of AC7 by ethanol is dependent on protein kinase C (PKC). We designed studies to determine which PKC isotype(s) are involved in the potentiation of Galpha(s)-activated AC7 activity by ethanol and to investigate the direct phosphorylation of AC7 by PKC. AC7 was phosphorylated in vitro by the catalytic subunits of PKCs. The addition of ethanol to AC7-transfected HEK 293 cells increased the endogenous phosphorylation of AC7, as indicated by a decreased "back-phosphorylation" of AC7 by PKC in vitro. The potentiation of Galpha(s)-stimulated AC7 activity by either phorbol 12,13-dibutyrate or ethanol, in HEL cells endogenously expressing AC7, was not through the Ca(2+)-sensitive conventional PKCs. However, the potentiation of AC7 activity by ethanol or phorbol 12,13-dibutyrate was found to be reduced by the selective inhibitor of PKCdelta (rottlerin), a PKCdelta-specific inhibitory peptide (deltaV1-1), and the expression of the dominant negative form of PKCdelta. Immunoprecipitation data indicated that PKCdelta could bind and directly phosphorylate AC7. The results indicate that the potentiation of AC7 activity by ethanol involves phosphorylation of AC7 that is mediated by PKCdelta.  相似文献   
999.
Abstract Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (α- and β-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1α, α-tubulin, and β-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of “Plantae” is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.  相似文献   
1000.
Multimerization of the Hantaan virus nucleocapsid protein (NP) in Hantaan virus-infected Vero E6 cells was observed in a competitive enzyme-linked immunosorbent assay (ELISA). Recombinant and truncated NPs of Hantaan, Seoul, and Dobrava viruses lacking the N-terminal 49 amino acids were also detected as multimers. Although truncated NPs of Hantaan virus lacking the N-terminal 154 amino acids existed as a monomer, those of Seoul and Dobrava formed multimers. The multimerized truncated NP antigens of Seoul and Dobrava viruses could detect serotype-specific antibodies, whereas the monomeric truncated NP antigen of Hantaan virus lacking the N-terminal 154 amino acids could not, suggesting that a hantavirus serotype-specific epitope on the NP results in multimerization. The NP-NP interaction was also detected by using a yeast two-hybrid assay. Two regions, amino acids 100 to 125 (region 1) and amino acids 404 to 429 (region 2), were essential for the NP-NP interaction in yeast. The NP of Seoul virus in which the tryptophan at amino acid number 119 was replaced by alanine (W119A mutation) did not multimerize in the yeast two-hybrid assay, indicating that tryptophan 119 in region 1 is important for the NP-NP interaction in yeast. However, W119A mutants expressed in mammalian cells were detected as the multimer by using competitive ELISA. Similarly, the truncated NP of Seoul virus expressing amino acids 155 to 429 showed a homologous interaction in a competitive ELISA but not in the yeast two-hybrid assay, indicating that the C-terminal region is important for the multimerization detected by competitive ELISA. Combined, the results indicate that several steps and regions are involved in multimerization of hantavirus NP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号