首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   221篇
  国内免费   9篇
  2022年   21篇
  2021年   33篇
  2020年   25篇
  2019年   47篇
  2018年   43篇
  2017年   54篇
  2016年   58篇
  2015年   86篇
  2014年   90篇
  2013年   124篇
  2012年   119篇
  2011年   135篇
  2010年   103篇
  2009年   86篇
  2008年   93篇
  2007年   106篇
  2006年   105篇
  2005年   96篇
  2004年   86篇
  2003年   64篇
  2002年   74篇
  2001年   62篇
  2000年   64篇
  1999年   49篇
  1998年   23篇
  1997年   17篇
  1996年   14篇
  1995年   19篇
  1994年   11篇
  1993年   11篇
  1992年   46篇
  1991年   30篇
  1990年   27篇
  1989年   34篇
  1988年   25篇
  1987年   19篇
  1986年   17篇
  1985年   26篇
  1984年   16篇
  1983年   18篇
  1981年   8篇
  1980年   13篇
  1979年   8篇
  1978年   15篇
  1975年   10篇
  1974年   12篇
  1973年   17篇
  1972年   11篇
  1971年   7篇
  1968年   8篇
排序方式: 共有2339条查询结果,搜索用时 15 毫秒
111.
112.

Objective

To investigate the effects of heat-killed Enterococcus faecalis ATCC 29212 and P25RC clinical strain (derived from an obturated root canal with apical periodontitis) on osteoclast differentiation within an osteoblast/osteoclast co-culture system.

Results

Heat-killed E. faecalis significantly increased the proportion of multinucleated osteoclastic cells (MNCs) within the co-culture system. The IL-6 level was significantly increased upon exposure to heat-killed E. faecalis. Gene expression levels of NFATc1 and cathepsin K were significantly up-regulated compared to the untreated control. EphrinB2 and EphB4 expressions at both the mRNA and protein levels were also significantly upregulated compared to the untreated control.

Conclusions

Heat-killed E. faecalis can induce osteoclast differentiation within the osteoblast/osteoclast co-culture system in vitro, possibly through ephrinB2-EphB4 bidirectional signaling.
  相似文献   
113.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   
114.
Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end‐stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD‐ALB) or healthy volunteers (N‐ALB). From high‐performance liquid chromatography spectra, we observed that one uremic solute binds to HD‐ALB via the formation of disulfide bonds between HD‐ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N‐ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD‐ALB. Our results suggest that protein‐bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD‐ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
115.
116.
117.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
118.
A new tribromoiododiphenyl ether ( 1 ) and eight known brominated diphenyl ethers ( 2 – 9 ) were isolated from the MeOH extract of the sponge Arenosclera sp. collected in Vietnam, using repeated open column chromatography and preparative thin layer chromatography. The chemical structure of the new compound 1 was determined by analyses of spectroscopic (1D‐ and 2D‐NMR, and MS) data and by comparison of our data with those reported in the literature. Compounds 1 , 3 , and 8 exhibited strong antibacterial activities against the Gram‐positive bacteria Bacillus subtilis and Staphylococcus aureus and the Gram‐negative bacterium Klebsiella pneumoniae with MIC values ranging from 0.8 to 6.3 μm , while compounds 5 and 7 only displayed activities against Gram‐positive bacteria with MIC values from 0.5 to 3.1 μm . Compound 2 showed activities against the four tested bacteria with MIC values ranging from 0.5 to 6.3 μm .  相似文献   
119.
Relatively little is known about the genetic aberrations of conjunctival melanomas (CoM) and their correlation with clinical and histomorphological features as well as prognosis. The aim of this large collaborative multicenter study was to determine potential key biomarkers for metastatic risk and any druggable targets for high metastatic risk CoM. Using Affymetrix single nucleotide polymorphism genotyping arrays on 59 CoM, we detected frequent amplifications on chromosome (chr) 6p and deletions on 7q, and characterized mutation‐specific copy number alterations. Deletions on chr 10q11.21‐26.2, a region harboring the tumor suppressor genes, PDCD4, SUFU, NEURL1, PTEN, RASSF4, DMBT1, and C10orf90 and C10orf99, significantly correlated with metastasis (Fisher's exact, p ≤ 0.04), lymphatic invasion (Fisher's exact, p ≤ 0.02), increasing tumor thickness (Mann–Whitney, p ≤ 0.02), and BRAF mutation (Fisher's exact, p ≤ 0.05). This enhanced insight into CoM biology is a step toward identifying patients at risk of metastasis and potential therapeutic targets for systemic disease.  相似文献   
120.
Climate change is affecting the distribution of species and the functioning of ecosystems. For species that are slow growing and poorly dispersed, climate change can force a lag between the distributions of species and the geographic distributions of their climatic envelopes, exposing species to the risk of extinction. Climate also governs the resilience of species and ecosystems to disturbance, such as wildfire. Here we use species distribution modelling and palaeoecology to assess and test the impact of vegetation–climate disequilibrium on the resilience of an endangered fire‐sensitive rainforest community to fires. First, we modelled the probability of occurrence of Athrotaxis spp. and Nothofagus gunnii rainforest in Tasmania (hereon “montane rainforest”) as a function of climate. We then analysed three pollen and charcoal records spanning the last 7,500 cal year BP from within both high (n = 1) and low (n = 2) probability of occurrence areas. Our study indicates that climatic change between 3,000 and 4,000 cal year bp induced a disequilibrium between montane rainforests and climate that drove a loss of resilience of these communities. Current and future climate change are likely to shift the geographic distribution of the climatic envelopes of this plant community further, suggesting that current high‐resilience locations will face a reduction in resilience. Coupled with the forecast of increasing fire activity in southern temperate regions, this heralds a significant threat to this and other slow growing, poorly dispersed and fire sensitive forest systems that are common in the southern mid to high latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号