首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63133篇
  免费   18335篇
  国内免费   2053篇
  83521篇
  2023年   377篇
  2022年   913篇
  2021年   1736篇
  2020年   2947篇
  2019年   4609篇
  2018年   4790篇
  2017年   4786篇
  2016年   5184篇
  2015年   5895篇
  2014年   5768篇
  2013年   6503篇
  2012年   4646篇
  2011年   4306篇
  2010年   4694篇
  2009年   3224篇
  2008年   2554篇
  2007年   2082篇
  2006年   1934篇
  2005年   1795篇
  2004年   1657篇
  2003年   1524篇
  2002年   1439篇
  2001年   1219篇
  2000年   1100篇
  1999年   968篇
  1998年   410篇
  1997年   377篇
  1996年   357篇
  1995年   306篇
  1994年   311篇
  1993年   224篇
  1992年   449篇
  1991年   420篇
  1990年   352篇
  1989年   349篇
  1988年   296篇
  1987年   266篇
  1986年   245篇
  1985年   282篇
  1984年   185篇
  1983年   164篇
  1982年   144篇
  1981年   141篇
  1979年   167篇
  1978年   146篇
  1977年   122篇
  1976年   107篇
  1975年   133篇
  1974年   145篇
  1973年   128篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
FTA® cards were used for long‐term storage of avian blood samples. Blood DNA was extracted by a simple method and used in PCR for sex identification of adult and nestling Great Grey Shrikes Lanius excubitor.  相似文献   
22.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
23.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
24.
25.
A new species, Galearis huanglongensis Q.W.Meng & Y.B.Luo, is described and illustrated. It is similar to Galearis cyclochila (Franch. & Sav.) Soó and Galearis diantha (Schltr.) P.F.Hunt, but differs in having a short spur, two elliptical lateral stigma lobes and distinctly separated bursicles. This new species is known only from the type locality, the Huanglong Valley, Songpan County, western Sichuan, China, growing amongst mosses under alpine shrubs at an elevation of about 3000 m. Based on two years of observations of its population size, the species was categorized as critically endangered CR (B1a, B2a) according to the World Conservation Union (IUCN) Red List Categories and Criteria, Version 3.1. The micromorphology of pollinia and seeds was observed by scanning electron microscopy and compared with that of G. cyclochila and G. diantha. The results supported G. huanglongensis Q.W.Meng & Y.B.Luo as a new species. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 689–695.  相似文献   
26.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
27.
28.
The urinary bladder of euryhaline teleost is an important osmoregulatory organ which absorbs Na+, Cl-, and water from urine. Using patch clamp technique, single stretch-activated channels, which were permeable to K+ and Na+ (PNa/PK approximately 0.75) and had conductances of 55 and 116 pS, were studied. In excised, inside-out patches which were voltage-clamped in the physiological range of membrane potential, the single-channel open probability (Po) was low (approximately 0.02), and increased to a maximum of 0.9 with applied pipette suction. Single-channel conductance also increased with suction. The channels showed adaptation to applied suction and relaxed to a steady-state activity about 20 seconds after application of suction. The Po increased up to 0.9 with strong membrane depolarization (Vm = 0 to +80 mV); however, there was little dependence of Po on membrane potential in the physiological range. The kinetic data suggest that there is one conducting state and at least two non-conducting states of the channel. The open-time constant increased with suction but remained unchanged with membrane potential (Vm = -70 to +60 mV). The mean closed-time of the channel decreased with suction and membrane depolarization. These results demonstrate the presence of a non-selective monovalent cation channel which may be involved in cell volume regulation in the goby urinary bladder. Additionally, this channel may function as an enhancer of Na+ influx and K+ efflux across the bladder cell as part of transepithelial ion transport if it is located in apical membrane.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号