首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   15篇
  2024年   2篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2018年   6篇
  2016年   9篇
  2015年   8篇
  2014年   24篇
  2013年   22篇
  2012年   23篇
  2011年   27篇
  2010年   14篇
  2009年   28篇
  2008年   29篇
  2007年   28篇
  2006年   20篇
  2005年   20篇
  2004年   20篇
  2003年   15篇
  2002年   18篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有402条查询结果,搜索用时 31 毫秒
91.
The centromere is the chromosomal site that joins to microtubules during mitosis for proper segregation. Determining the location of a centromere-specific histone H3 called CENP-A at the centromere is vital for understanding centromere structure and function. Here, we report the identification of three human proteins essential for centromere/kinetochore structure and function, hMis18alpha, hMis18beta, and M18BP1, the complex of which is accumulated specifically at the telophase-G1 centromere. We provide evidence that such centromeric localization of hMis18 is essential for the subsequent recruitment of de novo-synthesized CENP-A. If any of the three is knocked down by RNAi, centromere recruitment of newly synthesized CENP-A is rapidly abolished, followed by defects such as misaligned chromosomes, anaphase missegregation, and interphase micronuclei. Tricostatin A, an inhibitor to histone deacetylase, suppresses the loss of CENP-A recruitment to centromeres in hMis18alpha RNAi cells. Telophase centromere chromatin may be primed or licensed by the hMis18 complex and RbAp46/48 to recruit CENP-A through regulating the acetylation status in the centromere.  相似文献   
92.
We have previously demonstrated that alpha-mannosyl ceramide and its derivatives promote immune responses of NK1.1(+) invariant Valpha19-Jalpha33 T cell receptor (TCR) alpha(+) T cells (Valpha19 NKT cells). In this study, attempts were made to determine the structural requirements for natural ligands for Valpha19 NKT cells. Naturally occurring and synthetic glycolipids were analyzed for their ability to stimulate the cells prepared from invariant Valpha19-Jalpha33 TCR transgenic mice, in which development of Valpha19 NKT cells is facilitated. As a result, alpha-mannosyl phosphatidylinositols such as 2,6-di-alpha-mannosyl phosphatidylinositol and alpha-mannosyl-4alpha-glucosaminyl-6-phosphatidylinositol (alpha-Man-GlcNH(2)-PtdIns) as well as alpha-mannosyl ceramide derivatives were found to activate the cells from the transgenic mouse liver, gut lamina propria and spleen in vivo and in vitro. Thus, glycolipids with nonreducing end alpha-mannosyl residues are suggested to be potent antigens for Valpha19 NKT cells. Next, a series of invariant Valpha19-Jalpha33 TCR(+) hybridomas, each with variations in the sequence of the Valpha-Jalpha junction and the TCR beta chain, were tested for responsiveness toward the alpha-mannosyl glycolipids. A loose correlation between the primary structure of the TCR and the reactive glycolipids was observed. For instance, hybridomas expressing TCRs consisting of an alpha chain with a variation in the Valpha19-Jalpha33 junction and a Vbeta6(+)beta chain showed affinity towards alpha-mannosyl ceramide and alpha-Man-GlcNH(2)-PtdIns, whereas those expressing TCRs with an invariant Valpha19-Jalpha33 alpha chain and a Vbeta8(+)beta chain responded to 2,6-di-alpha-mannosyl phosphatidylinositol. Thus, it is suggested that Valpha19 NKT cells with microheterogeneity in the TCR structure have been generated for defense against various antigens expressing alpha-mannosyl glycolipids.  相似文献   
93.
The cryoprotective effect of intracellular free high-mannose oligosaccharides (HMOS) on mammalian cells and proteins was examined by monitoring PC-12 cell viability and assaying protein kinase C (PKC)-epsilon activity. 1-Deoxymannojirimycin, an inhibitor of alpha-mannosidase, to cause an increase in intracellular free HMOS, significantly rescued PC-12 cells with 2-h freezing insult at -15 degrees C in a concentration (1-50mM)- and pretreatment time (48-72h)-dependent manner, as compared with unpretreated cells; full rescue from freezing injury was obtained with 1-deoxymannojirimycin at more than 25mM for 48-h pretreatment and more than 3mM for 72- and 96-h pretreatment. For PC-12 cells pretreated with 1-deoxymannojirimycin at 1mM for 72h, thawed cell viability after more than 8-w cryopreservation at -80 degrees C in 10% (v/v) dimethyl sulfoxide was much higher than that for cells without pretreatment. PKC-epsilon activity was well preserved after 16-h cryopreservation at -20 degrees C in the presence of mannose 9-N-acetylglucosamine 2 (Man9-GlcNAc2) (1 mM), an HMOS, while the activity was reduced to 15% without Man9-GlcNAc2. Collectively, the results of the present study suggest that intracellular free HMOS is a key molecule to protect mammalian cells and proteins from freezing injury; in other words, HMOS could be a new target for cryopreservation of mammalian cells and proteins.  相似文献   
94.
95.
96.
97.
Pregnane glycosides previously isolated from genus Caralluma (C. Penicillata, C. tuberculata and C. russelliana) were tested for their antitrypanosomal activity. Penicilloside E showed the highest antitrypanosomal activity (IC50 1.01 μg/ml) followed by caratuberside C (IC50 1.85 μg/ml), which exhibited the highest selectivity index (SI 12.04). It was noticed that acylation is required for the antitrypanosomal activity while glycosylation at C-20 has no significant effect on the activity.  相似文献   
98.
(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.(E,E,E)-Geranylgeraniol (GGOH) can be used as an important ingredient for perfumes and as a desirable raw material for synthesizing vitamins A and E (4, 13). It is also known to induce apoptosis in various cancer and tumor cell lines (24, 36). GGOH is the dephosphorylated derivative of (E,E,E)-geranylgeranyl diphosphate (GGPP) (Fig. (Fig.1).1). GGPP is a significant intermediate of ubiquinone and carotenoid biosyntheses, especially in carotenoid-producing microorganisms and plant cells. It is also utilized as the lipid anchor of geranylgeranylated proteins. In the yeast Saccharomyces cerevisiae, GGPP is synthesized by GGPP synthase (GGPS), encoded by the BTS1 gene, which catalyzes the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP) rather than the successive addition of IPP molecules to dimethylallyl diphosphate, geranyl diphosphate, and FPP that is detected in mammalian tissues (14). Biologically synthesized GGOH comprises only (E,E,E)-geometric isomers, and only the (E,E,E)-isomers have significant biological activities (23). The chemically synthesized form is usually obtained as mixtures of (E)- and (Z)-isomers and thus has lower potency. Therefore, there is a greater possibility of attaining efficient production of (E,E,E)-GGOH through fermentative production.Open in a separate windowFIG. 1.Biosynthetic pathway for GGOH in S. cerevisiae. The solid arrows indicate the one-step conversions in the biosynthesis, and the dashed arrows indicate the several steps. Intermediates: HMG-CoA, 3-hydroxy-3-methylflutaryl coenzyme A; DMAPP, dimethylallyl diphosphate. Enzymes: HMG-R, HMG-coenzyme A reductase (encoded by the HMG1 gene); FPS, FPP synthase (ERG20).Some yeast strains accumulate ergosterol up to 4.6% dry mass (1). Thus, yeasts have the potential to produce large amounts of GGOH if it is possible to enhance and redirect the metabolic flux to GGOH synthesis. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), encoded by the HMG1 gene has been shown to be the major rate-limiting enzyme in the mevalonate pathway in S. cerevisiae (12). Overproduction of the catalytic domain of HMG-R in an S. cerevisiae strain resulted in squalene accumulation of up to 1% (27) and 2% (8) dry mass but did not cause any difference in the contents of isoprenoid alcohols such as farnesol (FOH) and geraniol (27). These results suggest that squalene is preferably accumulated rather than GGOH when the mevalonate pathway is enhanced by overexpression of the HMG1 gene. Squalene is synthesized through the condensation of two molecules of FPP catalyzed by squalene synthase (SQS) encoded by the ERG9 gene in S. cerevisiae (Fig. (Fig.1).1). The addition of an SQS inhibitor to cultures of S. cerevisiae strains resulted in the production of considerable amounts of FOH (∼77.5 mg liter−1) and relatively small amounts of GGOH (∼2.2 mg liter−1) (20). It has also been reported that SQS-deficient (Δerg9) S. cerevisiae strains, which are sterol auxotrophic, accumulated FPP in their cells (35) and excreted 1.3 mg liter−1 of FOH into the culture medium (5). Therefore, inactivation of SQS seems to enhance FOH rather than GGOH production. This is probably because of the low GGPS activity in S. cerevisiae. Indeed, a carotenoid-producing Rhodotorula yeast strain showed higher GGOH (24.4 mg liter−1) than FOH (4.4 mg liter−1) production on cultivation with an SQS inhibitor (20). Our group previously found that GGOH production could be enhanced by overexpression of the BTS1 gene in S. cerevisiae without SQS inhibition. In addition, coexpression of a fusion of the BTS1 and farnesyl diphosphate synthetase (ERG20) genes along with the HMG1 gene resulted in the production of a substantial amount of GGOH with only a small amount of FOH (C. Ohto, M. Muramatsu, E. Sakuradani, S. Shimizu, and S. Obata, submitted for publication).These results suggest that GGOH can be produced from GGPP through some endogenous phosphatase activities when GGPP synthesis is enhanced. We therefore hypothesized that enhancement of the phosphatase activity could increase the productivity of GGOH. However, it is not clear what kind of phosphatase enhances the GGOH production. It has been reported that the products of the diacylglycerol diphosphate phosphatase (DPP1) gene and lipid phosphate phosphatase (LPP1) gene account for most of the FPP and GGPP phosphatase activities in a particulate (membrane associated) fraction of S. cerevisiae (9). In this study, we found that GGOH production could be enhanced by overexpression of these phosphatase genes. We also demonstrated that overexpression of the BTS1-DPP1 and BTS1-ERG20 fusion genes along with the HMG1 gene further increased GGOH production. Finally, we constructed a high-level GGOH-producing yeast available for industrial processes involving multicopy integration vectors. The productivity of GGOH was evaluated in test tube cultures and 10-liter jar fermentors.  相似文献   
99.
Jasmonic acid (JA) and salicylic acid (SA) are plant hormones involved in plant growth and development. Recent studies demonstrated that presence of a complex interplay between JA and SA signaling pathways to response to pathogenesis attack and biotic stresses. To our best knowledge, no method has existed for simultaneous analyses of JA, SA, and their related compounds. Especially, the glucosides are thought to be the storages or the inactivated compounds, but their contribution should be considered for elucidating the amount of the aglycons. It is also valuable for measuring the endogenous amount of phenylalanine, cinnamic acid, and benzoic acid that are the biosynthetic intermediates of SA due to the existence of isochorismate pathway to synthesize SA. We established this method using deuterium labeled compounds as internal standards. This is the first report of simultaneous analysis of endogenous JA, SA, and their related compounds. Measuring the endogenous JA, SA, and their related compounds that had been accumulated in tobacco plants proved the practicality of the newly developed method. It was demonstrated that accumulation of JA, SA and their related compounds were induced in both case of TMV infection and abiotic stresses.  相似文献   
100.
The difference in responses to osmotic stress between the laboratory and sake-brewing strains of Saccharomyces cerevisiae at the translational level was compared by two-dimensional polyacrylamide gel electrophoresis. Proteins, whose production was significantly changed by the osmotic stress, were identified by peptide mass fingerprinting. In the laboratory strain, translation of Hor2p, the protein responsible for glycerol biosynthesis, and Ald6p, related to acetate biosynthesis, was induced under high osmotic pressure conditions. In addition, production of proteins related to translation and stress response was also changed under this condition. On the other hand, in the sake-brewing strain, translation of Hor2p, Hsp26p, and some stress-related proteins was upregulated. The change in the production of enzymes related to glycolysis and ethanol formation was small; however, the production of enzymes related to glycerol formation increased in both strains. These results suggest that enhancement of glycerol formation due to enhancement of the translation of proteins, such as Hor2p, is required for growth of S. cerevisiae under high osmotic pressure condition. This is the first report on the analysis of responses of a sake-brewing strain to high osmotic pressure stress based on proteomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号