首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   29篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   22篇
  2013年   22篇
  2012年   30篇
  2011年   26篇
  2010年   22篇
  2009年   23篇
  2008年   23篇
  2007年   41篇
  2006年   29篇
  2005年   35篇
  2004年   37篇
  2003年   30篇
  2002年   33篇
  2001年   4篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
81.
Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-d-glucopyranoside (K3Glc), kaempferol 7-O-β-d-glucopyranoside (K7Glc) and quercetin 3-O-β-d-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist.  相似文献   
82.
Psychological stress is an environmental factor considered to be a precipitating factor of inflammatory bowel disease. Interleukin (IL)-18 plays a role in stress-induced aggravation in some diseases. The aim of this study was to establish a model of murine colitis exacerbated by psychological stress and to clarify the role of IL-18 in this model. Male C57Bl/6 mice and IL-18(-/-) mice were used for this study. The mice received dextran sulfate sodium (DSS) for induction of colitis. Some mice were exposed to psychological stress using a communication box. Body weight, colonic length, and histological inflammation were measured for assessment of colitis. Tumor necrosis factor (TNF)-α and IL-18 expression in the colon and IL-18 expression in the adrenal gland were analyzed using real-time PCR. The effect of anti-IL-18 antibody was also investigated. Effects of TNF-α and IL-18 on cytokine expressions were studied using the colonic epithelial cell line LS174T. Induction of psychological stress in DSS-treated wild-type mice significantly exacerbated colitis with enhanced expression of proinflammatory cytokines and IL-18. However, induction of psychological stress in DSS-treated IL-18(-/-) mice did not aggravate colitis compared with that in the IL-18(-/-) group given only DSS treatment. Stress-induced aggravation of colitis was ameliorated significantly by anti-IL-18 antibody treatment. IL-18 did not enhance TNF-α-induced expression of intercellular adhesion molecule-1 or IL-8 in LS174T. We established a model of colitis exacerbated by psychological stress. Psychological stress enhanced IL-18 expression and plays a proinflammatory role in stress-induced aggravation of colitis.  相似文献   
83.
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.  相似文献   
84.
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.  相似文献   
85.
We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates.  相似文献   
86.
The development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas). At this stage, PGCs coalesce into two bilateral vasa-expressing foci in the ventrolateral regions of the trunk after their migration and group organization. Nineteen mutations were identified from a screen corresponding to 450 mutagenized haploid genomes. Eleven of the mutations caused altered PGC distribution. Most of these alterations were associated with morphological abnormalities and could be grouped into four phenotypic classes: Class 1, PGCs dispersed into bilateral lines; Class 2, PGCs dispersed in a region more medial than that in Class 1; Class 3, PGCs scattered laterally and over the yolk sac area; and Class 4, PGCs clustered in a single median focus. Eight mutations caused a decrease in the number of PGCs. This decrease was observed in the offspring of heterozygous mothers, indicating the contribution of a maternal factor in determining PGC abundance. Taken together, these mutations should prove useful in identifying molecular mechanisms underlying the early PGC development and migration.  相似文献   
87.
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.  相似文献   
88.
The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.  相似文献   
89.
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.  相似文献   
90.
To gain insight for the role of mast cell‐produced heparin in the regulation of epidermal homeostasis and skin pigmentation, we have investigated the effect of heparin on melanosome uptake and proinflammatory responses in normal human epidermal keratinocytes (NHEKs). We quantified phagocytic activity of NHEKs with uptake of melanosomes or fluorescent microspheres. Heparin exhibited the inhibitory effect on keratinocyte phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways. In fact, the heparin‐treated NHEKs showed impaired activation of Akt and ERK during phagocytosis, whereas PI3k and MEK inhibitors significantly suppressed melanosome uptake by NHEKs. In addition, the inflammation marker cycloxygenase‐2 (COX‐2) expression and prostaglandin E2 (PGE2) production were induced during phagocytosis, while these effects were downregulated in the presence of heparin. Our observations suggest that heparin may play an antiphagocytic and anti‐inflammation role in epidermis of human skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号