首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   29篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   23篇
  2013年   25篇
  2012年   31篇
  2011年   26篇
  2010年   22篇
  2009年   23篇
  2008年   24篇
  2007年   42篇
  2006年   31篇
  2005年   35篇
  2004年   38篇
  2003年   30篇
  2002年   33篇
  2001年   5篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有518条查询结果,搜索用时 15 毫秒
51.
52.
An endo-beta-mannosidase [EC 3.2.1.152, glycoside hydrolase family 2], which hydrolyzes the Manbeta1-4GlcNAc linkage of N-glycans in an endo-manner, has been found in plant tissues [Ishimizu, T., Sasaki, A., Okutani, S., Maeda, M., Yamagishi, M., and Hase, S. (2004) J. Biol. Chem. 279, 38555-38562]. So far, this glycosidase has been purified only from a monocot plant, a lily. Here, an endo-beta-mannosidase was purified from a dicot plant, cabbage (Brassica oleracea), and characterized. The cabbage endo-beta-mannosidase consists of four polypeptides. These four polypeptides are encoded by a single gene, whose nucleotide sequence is homologous to those of the lily and Arabidopsis endo-beta-mannosidase genes. 1H NMR analysis of the stereochemistry of the hydrolysis of pyridylaminated (PA) Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc showed that the cabbage endo-beta-mannosidase is a retaining glycoside hydrolase, as are other glycoside hydrolase family 2 enzymes. The enzymatic characteristics, including substrate specificity, of the cabbage enzyme are very similar to those of the lily enzyme. These endo-beta-mannosidases specifically act on Man(n)Manalpha1-6Manbeta1-4GlcNAcbeta1-4GlcNAc-PA (n = 0 to 2). These results suggest that the endo-beta-mannosidase is present in at least the angiosperms, and has common roles, such as the degradation of N-glycans.  相似文献   
53.
Micelle formations of sodium glyco- and taurochenodeoxycholate (NaGCDC and NaTCDC) and sodium glyco- and tauroursodeoxycholates (NaGUDC and NaTUDC) was studied at 308.2 K for their critical micelle concentrations at various NaCl concentrations by pyrene fluorescence probe, and the degree of counterion binding to micelle was determined using the Corrin-Harkins plots. The degree of counterion binding was found to be 0.37-0.38 for chenodeoxycholate conjugates, while the determination of the degree was quite difficult for ursodeoxycholate conjugates. The change of I1/I3 values on the fluorescence spectrum with the conjugate bile salt concentration suggested two steps for their bile salt aggregation. The first step is a commencement of smaller aggregates, the first cmc, and the second one is a starting of stable aggregates, the second cmc. The aggregation number was determined at 308.2 K and 0.15 M NaCl concentration by static light scattering: 16.3 and 11.9 for sodium NaGCDC and NaTCDC, and 7.9 and 7.1 for NaGUDC and NaTUDC, respectively. The solubilization of cholesterol into the bile salt micelles in the presence of coexisting cholesterol phase and the maximum additive concentration (MAC) of cholesterol was determined against the bile salt concentration. The standard Gibbs energy change for the solubilization was evaluated, where the micelles were regarded as a chemical species. The solubilization was stabilized in the order of NaGUDC approximately = NaTUDC < NaTC < NaGC < NaTCDC < NaGCDC < NaTDC < NaGDC, where the preceding results were taken into the order.  相似文献   
54.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   
55.
Docosahexaenoic acid (DHA) plays an important role in visual function but has a highly oxidation-prone chemical structure. Therefore, we investigated how dietary DHA affects the generation of lipid peroxides in rat retina under oxidative stress in diabetes with/without vitamin E (VE) deficiency. Streptozotocin-induced (50 mg i.p./kg B.W.) diabetic Sprague-Dawley (SD) rats were assigned to four groups: (i) control/VE(+), (ii) DHA/VE(+), (iii) control/VE( - ) and (iv) DHA/VE( - ), and raised for 28 days. We then measured lipid peroxide levels in the retina, serum and liver. With a normal intake of VE, dietary DHA increased only the retinal level of thiobarbituric acid-reactive substances (TBARS) slightly. In contrast, in rats with VE deficiency, dietary DHA increased serum and liver lipid peroxide levels but not in the retina. These results suggest that dietary DHA does not necessarily promote lipid peroxidation in the retina even under high oxidative stress.  相似文献   
56.
Inducible co-stimulator (ICOS) is the third member of the CD28/cytotoxic T-lymphocyte associated antigen-4 family and is involved in the proliferation and activation of T cells. A detailed functional analysis of ICOS on peripheral blood T cells from patients with systemic lupus erythematosus (SLE) has not yet been reported. In the present study we developed a fully human anti-human ICOS mAb (JTA009) with high avidity and investigated the immunopathological roles of ICOS in SLE. JTA009 exhibited higher avidity for ICOS than a previously reported mAb, namely SA12. Using JTA009, ICOS was detected in a substantial proportion of unstimulated peripheral blood T cells from both normal control individuals and patients with SLE. In CD4+CD45RO+ T cells from peripheral blood, the percentage of ICOS+ cells and mean fluorescence intensity with JTA009 were significantly higher in active SLE than in inactive SLE or in normal control individuals. JTA009 co-stimulated peripheral blood T cells in the presence of suboptimal concentrations of anti-CD3 mAb. Median values of [3H]thymidine incorporation were higher in SLE T cells with ICOS co-stimulation than in normal T cells, and the difference between inactive SLE patients and normal control individuals achieved statistical significance. ICOS co-stimulation significantly increased the production of IFN-γ, IL-4 and IL-10 in both SLE and normal T cells. IFN-γ in the culture supernatants of both active and inactive SLE T cells with ICOS co-stimulation was significantly higher than in normal control T cells. Finally, SLE T cells with ICOS co-stimulation selectively and significantly enhanced the production of IgG anti-double-stranded DNA antibodies by autologous B cells. These findings suggest that ICOS is involved in abnormal T cell activation in SLE, and that blockade of the interaction between ICOS and its receptor may have therapeutic value in the treatment of this intractable disease.  相似文献   
57.
58.
59.
We used a model intestinal solution to understand the mechanisms of cholesterol lowering by the addition of plant sterols. The experimental results of the competitive solubilization of cholesterol and β-sitosterol in vitro give useful information about these mechanisms. The states of the model intestinal solution as a solubilizer were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) by changing the number of components, and the bile salt and phosphatidylcholine concentrations. There were aggregates of different sizes: liposomes and mixed micelles depending on their components and concentrations. The maximum solubilization of cholesterol increased from 0.2mM to 1.3mM when adding fatty compounds in the pure bile salts system, which is almost the same as the full components model intestinal solution. Therefore, an excessive intake of fatty compounds may also increase cholesterol absorption in vivo. Even if the components of the model intestinal solution were modified from the standard condition, there were not remarkable differences in the selectivity of cholesterol and β-sitosterol in competitive solubilization. With the addition of β-sitosterol, the maximum solubilization of cholesterol decreases to almost half of that in the system with only cholesterol, except for PC-rich systems. In general, the different structures of aggregates considerably influence the maximum solubilization of sterols but not the selectivity of cholesterol and β-sitosterol in the competitive solubilization. The Gibbs energy change (ΔG°) of the solubilization of β-sitosterol showed a more negative value than cholesterol by -4 to -6kJmol(-1), which indicates that β-sitosterol is energetically favored relative to cholesterol in the model intestinal solution, regardless of the different systems.  相似文献   
60.
Enchytraeus japonensis is a small oligochaete that reproduces mainly asexually by fragmentation (autotomy) and regeneration. As sexual reproduction can also be induced, it is a good animal model for the study of both somatic and germline stem cells. To clarify the features of stem cells in regeneration, we investigated the proliferation and lineage of stem cells in E. japonensis. Neoblasts, which have the morphological characteristics of undifferentiated cells, were found to firmly adhere to the posterior surface of septa in each trunk segment. Also, smaller neoblast‐like cells, which are designated as N‐cells in this study, were located dorsal to the neoblasts on the septa. By conducting 5‐bromo‐2′‐deoxyuridine (BrdU)‐labeling‐experiments, we have shown that neoblasts are slow‐cycling (or quiescent) in intact growing worms, but proliferate rapidly in response to fragmentation. N‐cells proliferate more actively than do neoblasts in intact worms. The results of pulse‐chase experiments indicated that neoblast and N‐cell lineage mesodermal cells that incorporated BrdU early in regeneration migrated toward the autotomized site to form the mesodermal region of the blastema, while the epidermal and intestinal cells also contributed to the blastema locally near the autotomized site. We have also shown that neoblasts have stem cell characteristics by expressing Ej‐vlg2 and by the activity of telomerase during regeneration. Telomerase activity was high in the early stage of regeneration and correlated with the proliferation activity in the neoblast lineage of mesodermal stem cells. Taken together, our results indicate that neoblasts are mesodermal stem cells involved in the regeneration of E. japonensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号