首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   58篇
  757篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   9篇
  2018年   9篇
  2017年   10篇
  2016年   16篇
  2015年   22篇
  2014年   26篇
  2013年   33篇
  2012年   42篇
  2011年   34篇
  2010年   30篇
  2009年   28篇
  2008年   31篇
  2007年   45篇
  2006年   41篇
  2005年   42篇
  2004年   47篇
  2003年   34篇
  2002年   40篇
  2001年   13篇
  2000年   13篇
  1999年   16篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1961年   3篇
排序方式: 共有757条查询结果,搜索用时 15 毫秒
101.
To gain insight into the function of plasma membrane intrinsic protein (PIP) genes in apple, two genes, MdPIP1a and MdPIP1b, were isolated. MdPIP1 expression was in accordance with the volume increase during fruit development, which is a loading process of water and solutes. In addition, the expression of MdPIP1 was up-regulated in the stems by osmotic stress. These results indicate that MdPIP1 may play important roles not only in fruit expansion, but also in maintaining water homeostasis under stress conditions.  相似文献   
102.
103.
Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-d-glucopyranoside (K3Glc), kaempferol 7-O-β-d-glucopyranoside (K7Glc) and quercetin 3-O-β-d-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist.  相似文献   
104.
Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front-rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2-containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.  相似文献   
105.
In rodents a high-fructose diet induces metabolic derangements similar to those in metabolic syndrome. Previously we suggested that in mouse liver an unidentified nuclear protein binding to the sterol regulatory element (SRE)-binding protein-1c (SREBP-1c) promoter region plays a key role for the response to high-fructose diet. Here, using MALDI-TOF MASS technique, we identified an X-chromosome-linked RNA binding motif protein (RBMX) as a new candidate molecule. In electrophoretic mobility shift assay, anti-RBMX antibody displaced the bands induced by fructose-feeding. Overexpression or suppression of RBMX on rat hepatoma cells regulated the SREBP-1c promoter activity. RBMX may control SREBP-1c expression in mouse liver in response to high-fructose diet.  相似文献   
106.
107.
For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long‐term monitoring data. In Amami‐Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip‐nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density‐dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20–40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.  相似文献   
108.
Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.  相似文献   
109.
The testis consists of two types of tissues, the interstitial tissue and the seminiferous tubule, which have different functions and are assumed to have different nutritional metabolism. The localization of enzymes of the mitochondrial fatty acid β-oxidation system in the testis was investigated to obtain a better understanding of nutrient metabolism in the testis. Adult rat testis tissues were subjected to immunoblot analysis for quantitation of the amounts of enzyme proteins, to DNA microarray analysis for gene expression, and to immunofluorescence and immunoelectron microscopy for localization. Quantitative analysis by immunoblot and DNA microarray revealed that enzymes occur abundantly in Leydig cells in the interstitial tissue but much less so in the seminiferous tubules. Immunohistochemistry revealed that Leydig cells in the interstitial tissue and Sertoli cells in the seminiferous tubules contain a full set of mitochondrial fatty acid β-oxidation enzymes in relatively plentiful amounts among the cells in the testis, but that this is not so in spermatogenic cells. This characteristic localization of the mitochondrial fatty acid β-oxidation system in the testis needs further elucidation in terms of a possible role for it in the nutritional metabolism of spermatogenesis. (J Histochem Cytochem 58:195–206, 2010)  相似文献   
110.
Summary Derepression of prophage in E. coli strain K12 results in constitutive synthesis of the enzymes directed by the nearby bacterial operon, gal (escape synthesis). Phage 82 fails to cause escape synthesis despite that it lysogenizes the strain K12 at the site identical to that of on the host chromosome. The reason for the observed difference between 82 and is studied in the light of the recent finding that escape synthesis in -lysogen is closely associated to phage-promoted replication of bacterial chromosome contiguous to the prophage including gal operon (escape replication). Excision-defective mutants from 82, 82int or 82xis, do initiate escape synthesis, suggesting that the prophage 82 is normally excised too quickly after induction to allow sufficient escape replication. In support of this, much more DNA hybridizable to bacterial DNA contained in gal accumulates after induction of 82int than after induction of 82. Studies with various hybrid phages between 82 and have suggested: 1. The occurrence of gal escape synthesis depends on the nature of the region between b2 and N in the map. 2. Regions of the 82 genome on both sides of the attachment site contribute independently to prevent gal escape synthesis. Implications of these results are discussed with regard to the factors involved in the prophage excision.The IIIrd article of this series is in Molec. Gen. Genet. 159, 185–190 (1978)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号