首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2002年   2篇
  2001年   1篇
  1974年   1篇
排序方式: 共有58条查询结果,搜索用时 453 毫秒
31.

Objectives

The role of advanced bronchoscopic diagnostic techniques in the detection and staging of lung cancer has increased sharply in recent years. The development of endobronchial ultrasound (EBUS) improved minimally invasive mediastinal staging and diagnosis of peripheral lung lesions (PLLs). We investigated the impact of using EBUS as a diagnostic method for tissue acquisition in lung cancer patients.

Methods

In a single center observational retrospective study, 3712 subjects were diagnosed with lung cancer from 2003 to 2013 (EBUS was introduced in 2008). Thus, we divided the data into two periods: the conventional bronchoscopy period (2003 to 2007) and the EBUS period (2008 to 2013).

Results

A total of 3712 patients were included in the analysis. Comparing the conventional bronchoscopy period with the EBUS period data, there has been a significant reduction in the use of diagnostic modalities: CT-guided biopsy (P < 0.0001) and pleural effusion cytology (P < 0.0001). The proportion of subjects diagnosed using bronchoscopy significantly increased from 39.4% in the conventional period to 47.4% in the EBUS period (P < 0.0001). In the EBUS period, there has also been a significant increase in the proportion of patients proceeding directly to diagnostic surgery (P < 0.0001). Compared to bronchoscopy, the incidence of complications was higher in those who underwent CT guide biopsy. The incidence of iatrogenic pneumothorax significantly decreased in the EBUS period.

Conclusions

Advanced bronchoscopic techniques are widely used in the diagnosis of lung cancer. At our institution, the increasing use of EBUS for providing lung cancer diagnosis has led to a significant reduction in other diagnostic modalities, namely CT-guided biopsy and pleural effusion cytology. These changes in practice also led to a reduction in the incidence of complications.  相似文献   
32.
Genome-scale metabolic network reconstruction can be used for simulating cellular behaviors by simultaneously monitoring thousands of biochemical reactions, and is therefore important for systems biology studies in microbes. However, the labor-intensive and time-consuming reconstruction process has hindered the progress of this important field. Here we present a web server, MrBac (Metabolic network Reconstructions for Bacteria), to streamline the network reconstruction process for draft genome-scale metabolic networks and to provide annotation information from multiple databases for further curation of the draft reconstructions. MrBac integrates comparative genomics, retrieval of genome annotations, and generation of standard systems biology file format ready for network analyses. We also used MrBac to automatically generate a draft metabolic model of Salmonella enteric serovar Typhimurium LT2. The high similarity between this automatic model and the experimentally validated models further supports the usefulness and accuracy of MrBac. The high efficiency and accuracy of MrBac may accelerate the advances of systems biology studies on microbiology. MrBac is freely available at http://sb.nhri.org.tw/MrBac.  相似文献   
33.
34.
Forest management often results in changes in the soil and its microbial communities. In the present study, differences in the soil bacterial community caused by forest management practices were characterized using small subunit (SSU) ribosomal RNA (rRNA) gene clone libraries. The communities were from a native hardwood forest (HWD) and two adjacent conifer plantations in a low-elevation montane, subtropical experimental forest at the Lienhuachi Experimental Forest (LHCEF) in central Taiwan. At this locality, the elevation ranges from 600 to 950 m, the mean annual precipitation is 2,200 mm, the mean annual temperature is 20.8°C, and the soil pH is 4. The conifer forests included a Cunninghamia konishii Hay (CNH) plantation of 40 years and an old growth Calocedrus formosana (Florin) Florin (CLC) forest of 80 years. A total of 476 clones were sequenced and assigned into 12 phylogenetic groups. Proteobacteria-affiliated clones (53%) predominated in the library from HWD soils. In contrast, Acidobacteria was the most abundant phylum and comprised 39% and 57% in the CLC and CNH libraries, respectively. Similarly, the most abundant OTUs in HWD soils were greatly reduced or absent in the CLC and CNH soils. Based on several diversity indices, the numbers of abundant OTUs and singletons, and rarefaction curves, the diversity of the HWD community (0.95 in evenness and Shannon diversity indices) was somewhat less than that in the CNH soils (0.97 in evenness and Shannon diversity indices). The diversity of the community in CLC soils was intermediate. The differences in diversity among the three communities may also reflect changes in abundances of a few OTUs. The CNH forest soil community may be still in a successional phase that is only partially stabilized after 40 years. Analysis of molecular variance also revealed that the bacterial community composition of HWD soils was significantly different from CLC and CNH soils (p = 0.001). These results suggest that the disturbance of forest conversion and tree species composition are important factors influencing the soil bacterial community among three forest ecosystems in the same climate.  相似文献   
35.
Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys60 located in the conserved active site is the putative active peroxidatic Cys. The role of Cys31 was investigated by site-directed mutagenesis. The C31S mutant (C31 → S31) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys31 in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C31 residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family.  相似文献   
36.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   
37.

Background

The DEP domain is a globular domain containing approximately 90 amino acids, which was first discovered in 3 proteins: Drosophila disheveled, Caenorhabditis elegans EGL-10, and mammalian Pleckstrin; hence the term, DEP. DEPDC1B is categorized as a potential Rho GTPase-activating protein. The function of the DEP domain in signal transduction pathways is not fully understood. The DEPDC1B protein exhibits the characteristic features of a signaling protein, and contains 2 conserved domains (DEP and RhoGAP) that are involved in Rho GTPase signaling. Small GTPases, such as Rac, CDC42, and Rho, regulate a multitude of cell events, including cell motility, growth, differentiation, cytoskeletal reorganization and cell cycle progression.

Results

In this study, we found that it was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B plays a role in regulating Rac1 translocated onto cell membranes, suggesting that DEPDC1B exerts a biological function by regulating Rac1. We examined oral cancer tissue; 6 out of 7 oral cancer tissue test samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue.

Conclusions

DEPDC1B was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B exerts a biological function by regulating Rac1. We found that oral cancer samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue. Suggest that DEPDC1B plays a role in the development of oral cancer. We revealed that proliferation was linked to a novel DEPDC1B-Rac1-ERK1/2 signaling axis in oral cancer cell lines.  相似文献   
38.
The photo-Fenton coupled with a biological system for the removal of di-(2-ethylhexyl) phthalate (DEHP) in wastewater was analyzed. The toxicity of DEHP-containing wastewater was found to be reduced after pretreatment by the photo-Fenton reaction. The effect of different factors, such as DEHP, Fe3+ and H2O2 concentrations and the reaction time, on degradation efficiency was investigated. The optimal time to stop the pretreatment process and introduce the effluent to the biological system was 60 min. The results show that effluent of DEHP-containing wastewater pretreated by the photo-Fenton method is biodegradable and that mineralization can be completed when the wastewater is subsequently treated in a biological system. The coupled Fenton and biological treatment system for the degradation of DEHP-containing wastewater can be successfully performed in a semi-continuous mode. These results indicate that the coupled photo-biological system is an effective and potential method for the treatment of DEHP-containing wastewater.  相似文献   
39.
Chen  Meng-Chun  Wang  Ming-Kuang  Chiu  Chih-Yu  Huang  Pan-Ming  King  Hen-Biau 《Plant and Soil》2001,231(1):37-44
Low molecular weight organic acids (LMWOAs) derived from root exudates, decomposing organic matter, and other sources are important ligands. The species of these LMWOAs in the Tsuga rhizosphere soil (TRS), and Yushania rhizosphere soil (YRS), and bulk soil (BS) from an alpine forest region were identified. LMWOA and organic functional groups were used to those fresh twigs and leaves, litters, and roots as comparison. The objectives of this study were to (i) develop a method that could be used to determine LMWOAs in soil solution by gas chromatography (GC), (ii) assess methods for processing LMWOAs in soil samples, and (iii) determine the relative proportions of organic carbon functional groups in the TRS, YRS and BS, and fresh plant materials with13C nuclear magnetic resonance (13C NMR) analysis. The proportion of organic acid contents followed the order of YRS > TRS > BS, and also showed significant differences (P < 0.05) from GC analysis. The amounts of malonic, fumaric and succinic acids in the YRS samples were greater than in the TRS and BS. Samples analyzed after 1 month of deep freeze storage (–24°C) showed no signs of decomposition. The proportion of organic functional groups in the rhizosphere and bulk soils quantified by 13C NMR analyses followed the general order: alkyl-C > O-alkyl-C > N-alkyl-C > acetal-C > aromatic-C > carboxylic-C > phenolic-C.  相似文献   
40.
Antibacterial characteristics and activity of acid-soluble chitosan   总被引:6,自引:0,他引:6  
The antibacterial activity of chitosan was investigated by assessing the mortality rates of Escherichia coli and Staphylococcus aureus based on the extent of damaged or missing cell walls and the degree of leakage of enzymes and nucleotides from different cellular locations. Chitosan was found to react with both the cell wall and the cell membrane, but not simultaneously, indicating that the inactivation of E. coli by chitosan occurs via a two-step sequential mechanism: an initial separation of the cell wall from its cell membrane, followed by destruction of the cell membrane. The similarity between the antibacterial profiles and patterns of chitosan and those of two control substances, polymyxin and EDTA, verified this mechanism. The antibacterial activity of chitosan could be altered by blocking the amino functionality through coupling of the chitosan to active agarose derivatives. These results verify the status of chitosan as a natural bactericide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号