首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2829篇
  免费   231篇
  国内免费   108篇
  2023年   29篇
  2022年   46篇
  2021年   115篇
  2020年   99篇
  2019年   91篇
  2018年   97篇
  2017年   55篇
  2016年   96篇
  2015年   158篇
  2014年   177篇
  2013年   191篇
  2012年   214篇
  2011年   196篇
  2010年   115篇
  2009年   104篇
  2008年   110篇
  2007年   123篇
  2006年   107篇
  2005年   96篇
  2004年   78篇
  2003年   70篇
  2002年   54篇
  2001年   57篇
  2000年   63篇
  1999年   64篇
  1998年   35篇
  1997年   27篇
  1996年   19篇
  1995年   29篇
  1994年   23篇
  1993年   12篇
  1992年   24篇
  1991年   27篇
  1990年   31篇
  1989年   27篇
  1988年   33篇
  1987年   21篇
  1986年   23篇
  1985年   25篇
  1984年   16篇
  1983年   17篇
  1982年   11篇
  1981年   10篇
  1980年   15篇
  1979年   15篇
  1978年   12篇
  1976年   12篇
  1975年   16篇
  1971年   12篇
  1970年   12篇
排序方式: 共有3168条查询结果,搜索用时 343 毫秒
151.
Gap junctions are composed of connexin 36 (Cx36) and play a critical role in the rod photoreceptor signaling pathways of the vertebrate retina. Despite the fact that their connection and modulation in various rod pathways have been extensively studied in adult animals, little is known about the contribution and regulation of gap junctions to the development of the AII amacrine cell (AC)‐mediated rod pathway. Using immunohistochemistry and microinjection, this study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult‐like tracer‐coupling pattern. Moreover, studies using dark‐rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII ACs were increased when neural activity was inhibited . Our findings suggest that Cx36 expression in the AII‐mediated rod pathway is activity dependent in the developing rabbit retina . © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 473–486, 2016  相似文献   
152.
Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 induced by lipopolysaccharide (LPS) both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways.  相似文献   
153.
The abnormal aggregation of amyloid proteins is reported to play a critical role in the etiology of neurodegenerative disorders. Studies have shown that excessive ferric irons are associated with the misfolding of amyloid proteins, and that (‐)‐epigallocatechin gallate (EGCG) is a good metallic ion chelator with inhibitory effect on the aggregation of amyloid proteins. EGCG has been thus considered as a potential drug candidate for the treatment of neurodegenerative diseases. However, the mechanism of action for EGCG in inhibition of aggregation of amyloid proteins is still remaining unclear. Silk fibroin (SF) shares similarities with amyloid proteins in some amino acid sequences and fibrillation kinetics. In this work, therefore, we used SF as a model of protein to investigate the effects of Fe(III) and EGCG on conformational transition by using turbidity assay, thioflavin T (ThT) fluorescence spectroscopy, Raman spectroscopy, and atomic force microscope (AFM). We demonstrated that low concentration of Fe(III) ions promoted the formation of β‐sheet conformers, while high concentration of Fe(III) ions inhibited further aggregation of SF. EGCG could significantly inhibit the conformational transition of SF when induced by Fe(III), and decrease the amount of β‐sheet conformers dose‐dependently. The findings provide important information regarding to EGCG as a potential agent for the prevention and treatment of neurodegenerative diseases. Fe(III) can accelerate the conformation transition of silk fibrion (SF) from random coil into β‐sheet, while (‐)‐epigallocatechin gallate (EGCG) inhibits Fe(III)‐induced β‐sheet aggregation of SF., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 100–107, 2016  相似文献   
154.
155.
Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G. barbadense fibre development mechanism by gene expression profiling and found two homoeologous fibre‐specific α‐expansins from G. barbadense, GbEXPA2 and GbEXPATR. GbEXPA2 (from the DT genome) is a classical α‐expansin, while its homoeolog, GbEXPATR (AT genome), encodes a truncated protein lacking the normal C‐terminal polysaccharide‐binding domain of other α‐expansins and is specifically expressed in G. barbadense. Silencing EXPA in G. hirsutum induced shorter fibres with thicker cell walls. GbEXPA2 overexpression in G. hirsutum had no effect on mature fibre length, but produced fibres with a slightly thicker wall and increased crystalline cellulose content. Interestingly, GbEXPATR overexpression resulted in longer, finer and stronger fibres coupled with significantly thinner cell walls. The longer and thinner fibre was associated with lower expression of a number of secondary wall‐associated genes, especially chitinase‐like genes, and walls with lower cellulose levels but higher noncellulosic polysaccharides which advocated that a delay in the transition to secondary wall synthesis might be responsible for better fibre. In conclusion, we propose that α‐expansins play a critical role in fibre development by loosening the cell wall; furthermore, a truncated form, GbEXPATR, has a more dramatic effect through reorganizing secondary wall synthesis and metabolism and should be a candidate gene for developing G. hirsutum cultivars with superior fibre quality.  相似文献   
156.
Adenosine triphosphate (ATP) acts on P2X receptors to initiate signal transmission. P2X7 receptors play a role in the pathophysiological process of myocardial ischemic injury. Long noncoding RNAs (lncRNAs) participate in numerous biological functions independent of protein translation. LncRNAs are implicated in nervous system diseases. This study investigated the effects of NONRATT021972 small interference RNA (siRNA) on the pathophysiologic processes mediated by P2X7 receptors in stellate ganglia (SG) after myocardial ischemic injury. Our results demonstrated that the expression of NONRATT021972 in SG was significantly higher in the myocardial ischemic (MI) group than in the control group. Treatment of MI rats with NONRATT021972 siRNA, the P2X7 antagonist brilliant blue G (BBG), or P2X7 siRNA improved the histology of injured ischemic cardiac tissues and decreased the elevated concentrations of serum myocardial enzymes, creatine kinase (CK), CK isoform MB (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) compared to the MI rats. NONRATT021972 siRNA, BBG, or P2X7 siRNA treatment in MI rats decreased the expression levels of P2X7 immunoreactivity, P2X7 messenger RNA (mRNA), and P2X7 protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) in the SG compared to MI rats. NONRATT021972 siRNA treatment prevented the pathophysiologic processes mediated by P2X7 receptors in the SG after myocardial ischemic injury.  相似文献   
157.
Leukotriene E4 (LTE4) that plays a key role in airway inflammation is expressed on platelets and eosinophils. We investigated whether blocking of the P2Y12 receptor can suppress eosinophilic inflammation in a mouse model of asthma because platelets and eosinophils share this receptor to be activated. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA), followed by OVA nebulization. On each challenge day, clopidogrel, a P2Y12 antagonist was administered 30 min. before each challenge. Forty‐eight hours after the last OVA challenge, mice were assessed for airway hyperresponsiveness (AHR), cell composition and cytokine levels, including chemokine ligand 5 (CCL5), in bronchoalveolar lavage (BAL) fluid. EOL cells were treated with LTE4, with or without clopidogrel treatment, and intracellular and extracellular eosinophil cationic protein (ECP) expressions were measured to find the inhibiting function of P2Y12 antagonist on eosinophilic activation. The levels of P2Y12 expression were increased markedly in the lung homogenates of OVA‐sensitized and ‐challenged mice after platelet depletion. Administration of clopidogrel decreased AHR and the number of airway inflammatory cells, including eosinophils, in BAL fluid following OVA challenge. These results were associated with decreased levels of Th2 cytokines and CCL5. Histological examination showed that inflammatory cells as well as mucus‐containing goblet cells were reduced in clopidogrel‐administered mice compared to vehicle‐treated mice. Clopidogrel inhibited extracellular ECP secretion after LTE4 stimulation in EOL‐1 cells. Clopidogrel could prevent development of AHR and airway inflammation in a mouse model of asthma. P2Y12 can be a novel therapeutic target to the suppression of eosinophils in asthma.  相似文献   
158.
The contradiction between high susceptibility of early weaned piglets to enteric pathogens and rigid restriction of antibiotic use in the diet is still prominent in the livestock production industry. To address this issue, the study was designed to replace dietary antibiotics partly or completely by an immunostimulant, namely heat-killed Mycobacterium phlei (M. phlei). Piglets (n = 192) were randomly assigned to one of the four groups: (1) basal diet (Group A), (2) basal diet + a mixture of antibiotics (80 mg/kg diet, Group B), (3) basal diet + a mixture of antibiotics (same as in Group B, but 40 mg/kg diet) + heat-killed M. phlei (1.5 g/kg diet) (Group C) and (4) basal diet + heat-killed M. phlei (3 g/kg diet) (Group D). All piglets received the respective diets from days 21 to 51 of age and were weaned at the age of 28 d. Compared with the Control (Group A), in all other groups the average daily gain, average daily feed intake, small intestinal villus height:crypt depth ratio and protein levels of occludin and ZO-1 in the jejunal mucosa were increased. A decreased incidence of diarrhoea in conjunction with an increased sIgA concentration in the intestinal mucosa and serum IL-12 and IFN-γ concentrations was found in groups supplemented with heat-killed M. phlei (Groups C and D), but not in Group B. Groups C and D also showed decreased IL-2 concentrations in the intestinal mucosa with lower TLR4 and phosphor-IκB protein levels. The antioxidant capacity was reinforced in Groups C and D, as evidenced by the reduction in malondialdehyde and enhanced activities of antioxidant enzymes in serum. These data indicate that heat-killed M. phlei is a promising alternative to antibiotic use for early weaned piglets via induction of protective immune responses.  相似文献   
159.
160.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号